Серия (математика)

Бесконечная сумма

В математике ряд это, грубо говоря, сложение бесконечного числа членов , одного за другим. [1] Изучение рядов — важная часть исчисления и его обобщения, математического анализа . Ряды используются в большинстве областей математики, даже для изучения конечных структур в комбинаторике посредством производящих функций . Математические свойства бесконечных рядов делают их широко применимыми в других количественных дисциплинах, таких как физика , информатика , статистика и финансы .

Среди древних греков идея о том, что потенциально бесконечное суммирование может дать конечный результат, считалась парадоксальной , наиболее известным примером чего являются парадоксы Зенона . [2] [3] Тем не менее, бесконечные ряды применялись на практике древнегреческими математиками, включая Архимеда , например, в квадратуре параболы . [4] [5] Математическая сторона парадоксов Зенона была решена с использованием концепции предела в 17 веке, особенно благодаря раннему исчислению Исаака Ньютона . [6] Решение было сделано более строгим и дополнительно улучшено в 19 веке благодаря работам Карла Фридриха Гаусса и Огюстена-Луи Коши , [7] среди прочих, отвечающих на вопросы о том, какие из этих сумм существуют, через полноту действительных чисел и можно ли переставить члены ряда или нет, не изменяя их суммы, используя абсолютную сходимость и условную сходимость рядов.

В современной терминологии любая упорядоченная бесконечная последовательность членов, будь то числа, функции , матрицы или что-либо еще, что можно сложить, определяет ряд, который является добавлением a i одного за другим. Чтобы подчеркнуть, что существует бесконечное количество членов, ряды часто также называют бесконечными рядами . Ряды представляются выражением типа или , используя обозначение суммирования с заглавной сигмой , [8] ( a 1 , a 2 , a 3 , ) {\displaystyle (a_{1},a_{2},a_{3},\ldots )} a 1 + a 2 + a 3 + , {\displaystyle a_{1}+a_{2}+a_{3}+\cdots ,} i = 1 a i . {\displaystyle \sum _{i=1}^{\infty }a_{i}.}

Бесконечная последовательность сложений, выраженная рядом, не может быть явно выполнена последовательно за конечное время. Однако, если члены и их конечные суммы принадлежат множеству , имеющему пределы , может быть возможным присвоить ряду значение, называемое суммой ряда . Это значение является пределом при стремлении n к бесконечности конечных сумм n первых членов ряда, если предел существует. [9] [10] [11] Эти конечные суммы называются частичными суммами ряда. Используя обозначение суммирования, если оно существует. [9] [10] [11] Когда предел существует, ряд сходится или суммируем , а также последовательность суммируема , а в противном случае, когда предел не существует , ряд расходится . [ 9] [10] [11] i = 1 a i = lim n i = 1 n a i , {\displaystyle \sum _{i=1}^{\infty }a_{i}=\lim _{n\to \infty }\sum _{i=1}^{n}a_{i},} ( a 1 , a 2 , a 3 , ) {\displaystyle (a_{1},a_{2},a_{3},\ldots )}

Выражение обозначает как ряд — неявный процесс сложения членов одного за другим до бесконечности, — так и, если ряд сходится, сумму ряда — явный предел процесса. Это обобщение похожего соглашения обозначать как сложение — процесс сложения, так и его результат — сумму a и b . i = 1 a i {\textstyle \sum _{i=1}^{\infty }a_{i}} a + b {\displaystyle a+b}

Обычно члены ряда происходят из кольца , часто поля действительных чисел или поля комплексных чисел . Если это так, то множество всех рядов также само является кольцом, в котором сложение состоит из почленного сложения членов ряда, а умножение — это произведение Коши . [12] [13] [14] R {\displaystyle \mathbb {R} } C {\displaystyle \mathbb {C} }

Определение

Ряд

Ряд или, избыточно, бесконечный ряд , является бесконечной суммой. Он часто представляется как [8] [ 15] , где члены являются членами последовательности чисел , функций или чего-либо еще, что может быть добавлено . Ряд также может быть представлен с заглавной сигмой : [8] a 0 + a 1 + a 2 + or a 1 + a 2 + a 3 + , {\displaystyle a_{0}+a_{1}+a_{2}+\cdots \quad {\text{or}}\quad a_{1}+a_{2}+a_{3}+\cdots ,} a k {\displaystyle a_{k}} k = 0 a k or k = 1 a k . {\displaystyle \sum _{k=0}^{\infty }a_{k}\qquad {\text{or}}\qquad \sum _{k=1}^{\infty }a_{k}.}

Также принято выражать ряды с помощью нескольких первых членов, многоточия, общего члена и затем конечного многоточия, причем общий член является выражением n- го члена как функции n : Например , число Эйлера можно определить с помощью ряда , где обозначает произведение первых положительных целых чисел и условно равно [16] [17] a 0 + a 1 + a 2 + + a n +  or  f ( 0 ) + f ( 1 ) + f ( 2 ) + + f ( n ) + . {\displaystyle a_{0}+a_{1}+a_{2}+\cdots +a_{n}+\cdots \quad {\text{ or }}\quad f(0)+f(1)+f(2)+\cdots +f(n)+\cdots .} n = 0 1 n ! = 1 + 1 + 1 2 + 1 6 + + 1 n ! + , {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}=1+1+{\frac {1}{2}}+{\frac {1}{6}}+\cdots +{\frac {1}{n!}}+\cdots ,} n ! {\displaystyle n!} n {\displaystyle n} 0 ! {\displaystyle 0!} 1. {\displaystyle 1.}

Частичная сумма ряда

Если ряд , его n- я частичная сумма равна [9] [10] [11] Некоторые авторы напрямую отождествляют ряд с его последовательностью частичных сумм так же фундаментально, как и с добавлением последовательности его отдельных членов. [9] [11] Последовательность частичных сумм и последовательность членов являются взаимно избыточными спецификациями ряда, поскольку последовательность членов может быть восстановлена ​​из последовательности частичных сумм с помощью s = k = 0 a k {\textstyle s=\sum _{k=0}^{\infty }a_{k}} s n = k = 0 n a k = a 0 + a 1 + + a n . {\displaystyle s_{n}=\sum _{k=0}^{n}a_{k}=a_{0}+a_{1}+\cdots +a_{n}.} a n = s n s n 1 . {\displaystyle a_{n}=s_{n}-s_{n-1}.}

Частичное суммирование последовательности является примером линейного преобразования последовательности , и оно также известно как префиксная сумма в информатике . Обратное преобразование для восстановления последовательности из ее частичных сумм — это конечная разность , еще одно линейное преобразование последовательности.

Частичные суммы рядов часто имеют более простые выражения в замкнутой форме, например, арифметический ряд имеет , а геометрический ряд [18] [19] имеет s n = k = 0 n ( a + k d ) = a + ( a + d ) + ( a + 2 d ) + + a + n d = a n + d n ( n + 1 ) / 2 {\displaystyle s_{n}=\sum _{k=0}^{n}(a+kd)=a+(a+d)+(a+2d)+\cdots +a+nd=an+dn(n+1)/2} s n = k = 0 n a r k = a + a r + a r 2 + + a r n = a ( r n + 1 1 ) / ( r 1 ) . {\displaystyle s_{n}=\sum _{k=0}^{n}ar^{k}=a+ar+ar^{2}+\cdots +ar^{n}=a(r^{n+1}-1)/(r-1).}

Сумма ряда

Иллюстрация 3 геометрических рядов с частичными суммами от 1 до 6 членов. Пунктирная линия представляет предел.

Строго говоря, ряд считается сходящимся , сходящимся или суммируемым, когда последовательность его частичных сумм имеет предел . Когда предел последовательности частичных сумм не существует, ряд расходится или является расходящимся . [20] Когда предел частичных сумм существует, он называется суммой ряда или значением ряда : [9] [10] [11] Ряд, содержащий только конечное число ненулевых членов, всегда сходится. Такие ряды полезны для рассмотрения конечных сумм без учета числа членов. [21] Когда сумма существует, разность между суммой ряда и его -й частичной суммой известна как -я ошибка усечения бесконечного ряда. [22] [23] k = 0 a k = lim n k = 0 n a k = lim n s n . {\displaystyle \sum _{k=0}^{\infty }a_{k}=\lim _{n\to \infty }\sum _{k=0}^{n}a_{k}=\lim _{n\to \infty }s_{n}.} n {\displaystyle n} s s n = k = n + 1 a k , {\textstyle s-s_{n}=\sum _{k=n+1}^{\infty }a_{k},} n {\displaystyle n}

Примером сходящегося ряда является геометрический ряд 1 + 1 2 + 1 4 + 1 8 + + 1 2 k + . {\displaystyle 1+{\frac {1}{2}}+{\frac {1}{4}}+{\frac {1}{8}}+\cdots +{\frac {1}{2^{k}}}+\cdots .}

С помощью алгебраических вычислений можно показать, что каждая частичная сумма равна Поскольку ряд сходится и сходится к 2 с ошибками усечения . [18] [19] s n {\displaystyle s_{n}} k = 0 n 1 2 k = 2 1 2 n . {\displaystyle \sum _{k=0}^{n}{\frac {1}{2^{k}}}=2-{\frac {1}{2^{n}}}.} lim n ( 2 1 2 n ) = 2 , {\displaystyle \lim _{n\to \infty }\left(2-{\frac {1}{2^{n}}}\right)=2,} 1 / 2 n {\textstyle 1/2^{n}}

Напротив, геометрическая прогрессия расходится в действительных числах . [18] [19] Однако она сходится в расширенной действительной числовой прямой , причем как ее предел и как ее ошибка усечения на каждом шаге. [24] k = 0 2 k {\displaystyle \sum _{k=0}^{\infty }2^{k}} + {\displaystyle +\infty } + {\displaystyle +\infty }

Операции

Добавление

Сложение двух рядов и задается почленной суммой [13] [25] [26] , или, в записи суммирования, a 0 + a 1 + a 2 + {\textstyle a_{0}+a_{1}+a_{2}+\cdots } b 0 + b 1 + b 2 + {\textstyle b_{0}+b_{1}+b_{2}+\cdots } ( a 0 + b 0 ) + ( a 1 + b 1 ) + ( a 2 + b 2 ) + {\textstyle (a_{0}+b_{0})+(a_{1}+b_{1})+(a_{2}+b_{2})+\cdots \,} k = 0 a k + k = 0 b k = k = 0 a k + b k . {\displaystyle \sum _{k=0}^{\infty }a_{k}+\sum _{k=0}^{\infty }b_{k}=\sum _{k=0}^{\infty }a_{k}+b_{k}.}

Используя символы и для частичных сумм сложенного ряда и для частичных сумм результирующего ряда, это определение подразумевает, что частичные суммы результирующего ряда следуют Тогда сумма результирующего ряда, т. е. предел последовательности частичных сумм результирующего ряда, удовлетворяет, когда пределы существуют. Следовательно, во-первых, ряд, полученный в результате сложения, суммируем, если сложенные ряды были суммируемыми, и, во-вторых, сумма результирующего ряда является сложением сумм сложенных рядов. Сложение двух расходящихся рядов может дать сходящийся ряд: например, сложение расходящегося ряда с рядом его членов, умноженных на , даст ряд из всех нулей, который сходится к нулю. Однако для любых двух рядов, где один сходится, а другой расходится, результат их сложения расходится. [25] s a , n {\displaystyle s_{a,n}} s b , n {\displaystyle s_{b,n}} s a + b , n {\displaystyle s_{a+b,n}} s a + b , n = s a , n + s b , n . {\displaystyle s_{a+b,n}=s_{a,n}+s_{b,n}.} lim n s a + b , n = lim n ( s a , n + s b , n ) = lim n s a , n + lim n s b , n , {\displaystyle \lim _{n\rightarrow \infty }s_{a+b,n}=\lim _{n\rightarrow \infty }(s_{a,n}+s_{b,n})=\lim _{n\rightarrow \infty }s_{a,n}+\lim _{n\rightarrow \infty }s_{b,n},} 1 {\displaystyle -1}

Умножение

Умножение двух рядов и для получения третьего ряда , называемого произведением Коши, [12] [13] [14] [26] можно записать в записи суммирования с каждым Здесь сходимость частичных сумм ряда не так просто установить, как для сложения. Однако, если оба ряда и являются абсолютно сходящимися рядами, то ряд, полученный в результате их умножения, также абсолютно сходится с суммой, равной произведению двух сумм умноженного ряда, [13] [26] a 0 + a 1 + a 2 + {\textstyle a_{0}+a_{1}+a_{2}+\cdots } b 0 + b 1 + b 2 + {\textstyle b_{0}+b_{1}+b_{2}+\cdots } c 0 + c 1 + c 2 + {\textstyle c_{0}+c_{1}+c_{2}+\cdots } ( k = 0 a k ) ( k = 0 b k ) = k = 0 c k = k = 0 j = 0 k a j b k j , {\displaystyle {\biggl (}\sum _{k=0}^{\infty }a_{k}{\biggr )}\cdot {\biggl (}\sum _{k=0}^{\infty }b_{k}{\biggr )}=\sum _{k=0}^{\infty }c_{k}=\sum _{k=0}^{\infty }\sum _{j=0}^{k}a_{j}b_{k-j},} c k = j = 0 k a j b k j = a 0 b k + a 1 b k 1 + + a k 1 b 1 + a k b 0 . {\textstyle c_{k}=\sum _{j=0}^{k}a_{j}b_{k-j}=a_{0}b_{k}+a_{1}b_{k-1}+\cdots +a_{k-1}b_{1}+a_{k}b_{0}.} c 0 + c 1 + c 2 + {\textstyle c_{0}+c_{1}+c_{2}+\cdots } a 0 + a 1 + a 2 + {\textstyle a_{0}+a_{1}+a_{2}+\cdots } b 0 + b 1 + b 2 + {\textstyle b_{0}+b_{1}+b_{2}+\cdots } lim n s c , n = ( lim n s a , n ) ( lim n s b , n ) . {\displaystyle \lim _{n\rightarrow \infty }s_{c,n}=\left(\,\lim _{n\rightarrow \infty }s_{a,n}\right)\cdot \left(\,\lim _{n\rightarrow \infty }s_{b,n}\right).}

Примеры числовых рядов

  • Геометрическая прогрессия [18] [19] — это ряд, в котором каждый последующий член получается путем умножения предыдущего члена на постоянное число (в данном контексте называемое знаменателем). Например:

1 + 1 2 + 1 4 + 1 8 + 1 16 + = n = 0 1 2 n = 2. {\displaystyle 1+{1 \over 2}+{1 \over 4}+{1 \over 8}+{1 \over 16}+\cdots =\sum _{n=0}^{\infty }{1 \over 2^{n}}=2.} В общем случае геометрический ряд с начальным членом и знаменателем сходится тогда и только тогда , когда , в этом случае он сходится к . a {\displaystyle a} r {\displaystyle r} n = 0 a r n , {\textstyle \sum _{n=0}^{\infty }ar^{n},} | r | < 1 {\textstyle |r|<1} a 1 r {\textstyle {a \over 1-r}}

  • Гармонический ряд — это ряд [27]

1 + 1 2 + 1 3 + 1 4 + 1 5 + = n = 1 1 n . {\displaystyle 1+{1 \over 2}+{1 \over 3}+{1 \over 4}+{1 \over 5}+\cdots =\sum _{n=1}^{\infty }{1 \over n}.} Гармонический ряд расходящийся .

  • Знакопеременный ряд — это ряд, в котором члены чередуют знаки. [28] Примеры:

1 1 2 + 1 3 1 4 + 1 5 = n = 1 ( 1 ) n 1 n = ln ( 2 ) , {\displaystyle 1-{1 \over 2}+{1 \over 3}-{1 \over 4}+{1 \over 5}-\cdots =\sum _{n=1}^{\infty }{\left(-1\right)^{n-1} \over n}=\ln(2),} знакопеременный гармонический ряд и формула Лейбница для 1 + 1 3 1 5 + 1 7 1 9 + = n = 1 ( 1 ) n 2 n 1 = π 4 , {\displaystyle -1+{\frac {1}{3}}-{\frac {1}{5}}+{\frac {1}{7}}-{\frac {1}{9}}+\cdots =\sum _{n=1}^{\infty }{\frac {\left(-1\right)^{n}}{2n-1}}=-{\frac {\pi }{4}},} π . {\displaystyle \pi .}

n = 1 ( b n b n + 1 ) {\displaystyle \sum _{n=1}^{\infty }(b_{n}-b_{n+1})} сходится, если последовательность b n сходится к пределу L —при n, стремящемся к бесконечности. Значение ряда тогда равно b 1L .

3 + 5 2 + 7 4 + 9 8 + 11 16 + = n = 0 ( 3 + 2 n ) 2 n . {\displaystyle 3+{5 \over 2}+{7 \over 4}+{9 \over 8}+{11 \over 16}+\cdots =\sum _{n=0}^{\infty }{(3+2n) \over 2^{n}}.}

n = 1 1 n p {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{p}}}} сходится при p > 1 и расходится при p ≤ 1, что можно показать с помощью интегрального критерия, описанного ниже в тестах сходимости. Как функция p , сумма этого ряда является дзета-функцией Римана . [30]

r F s [ a 1 , a 2 , , a r b 1 , b 2 , , b s ; z ] := n = 0 ( a 1 ) n ( a 2 ) n ( a r ) n ( b 1 ) n ( b 2 ) n ( b s ) n n ! z n {\displaystyle _{r}F_{s}\left[{\begin{matrix}a_{1},a_{2},\dotsc ,a_{r}\\b_{1},b_{2},\dotsc ,b_{s}\end{matrix}};z\right]:=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}(a_{2})_{n}\dotsb (a_{r})_{n}}{(b_{1})_{n}(b_{2})_{n}\dotsb (b_{s})_{n}\;n!}}z^{n}} и их обобщения (такие как базовые гипергеометрические ряды и эллиптические гипергеометрические ряды ) часто появляются в интегрируемых системах и математической физике . [31]

  • Есть некоторые элементарные ряды, сходимость которых пока не известна/не доказана. Например, неизвестно, является ли ряд Флинт-Хиллз

n = 1 1 n 3 sin 2 n {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{3}\sin ^{2}n}}} сходится или нет. Сходимость зависит от того, насколько хорошо может быть аппроксимирована рациональными числами (что пока неизвестно). Более конкретно, значения n с большими числовыми вкладами в сумму являются числителями конвергентов цепной дроби , последовательности, начинающейся с 1, 3, 22, 333, 355, 103993, ... (последовательность A046947 в OEIS ). Это целые числа n , которые близки к для некоторого целого числа m , так что близко к , а его обратная величина велика. π {\displaystyle \pi } π {\displaystyle \pi } m π {\displaystyle m\pi } sin n {\displaystyle \sin n} sin m π = 0 {\displaystyle \sin m\pi =0}

Пи

n = 1 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = π 2 6 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}}

n = 1 ( 1 ) n + 1 ( 4 ) 2 n 1 = 4 1 4 3 + 4 5 4 7 + 4 9 4 11 + 4 13 = π {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}(4)}{2n-1}}={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-{\frac {4}{11}}+{\frac {4}{13}}-\cdots =\pi }

Натуральный логарифм числа 2

n = 1 ( 1 ) n + 1 n = ln 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}=\ln 2}

n = 0 1 ( 2 n + 1 ) ( 2 n + 2 ) = ln 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{(2n+1)(2n+2)}}=\ln 2}

n = 0 ( 1 ) n ( n + 1 ) ( n + 2 ) = 2 ln ( 2 ) 1 {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(n+1)(n+2)}}=2\ln(2)-1}

n = 1 1 n ( 4 n 2 1 ) = 2 ln ( 2 ) 1 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n\left(4n^{2}-1\right)}}=2\ln(2)-1}

n = 1 1 2 n n = ln 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{n}n}}=\ln 2}

n = 1 ( 1 3 n + 1 4 n ) 1 n = ln 2 {\displaystyle \sum _{n=1}^{\infty }\left({\frac {1}{3^{n}}}+{\frac {1}{4^{n}}}\right){\frac {1}{n}}=\ln 2}

n = 1 1 2 n ( 2 n 1 ) = ln 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2n(2n-1)}}=\ln 2}

Основание натурального логарифмае

n = 0 ( 1 ) n n ! = 1 1 1 ! + 1 2 ! 1 3 ! + = 1 e {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}=1-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+\cdots ={\frac {1}{e}}}

n = 0 1 n ! = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + = e {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots =e}

Свойства ряда

Ряды классифицируются не только по тому, сходятся они или расходятся, но и по свойствам членов a n (абсолютная или условная сходимость); типу сходимости ряда (поточечная, равномерная); классу члена a n (является ли он действительным числом, арифметической прогрессией, тригонометрической функцией) и т. д.

Неотрицательные термины

Когда a n — неотрицательное действительное число для каждого n , последовательность S N частичных сумм не убывает. Отсюда следует, что ряд Σ a n с неотрицательными членами сходится тогда и только тогда, когда последовательность S N частичных сумм ограничена.

Например, сериал

n = 1 1 n 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}

сходится, так как неравенство

1 n 2 1 n 1 1 n , n 2 , {\displaystyle {\frac {1}{n^{2}}}\leq {\frac {1}{n-1}}-{\frac {1}{n}},\quad n\geq 2,}

а аргумент телескопической суммы подразумевает, что частичные суммы ограничены 2.

Точное значение исходного ряда равно (см. Базельскую задачу ). π 2 / 6 {\displaystyle \pi ^{2}/6}

Группировка

Группировка членов ряда создает новый ряд с последовательностью частичных сумм, которые являются подпоследовательностью частичных сумм исходного ряда. Это означает, что если исходный ряд сходится, то и новый ряд тоже сходится, поскольку все бесконечные подпоследовательности сходящейся последовательности также сходятся к одному и тому же пределу. Однако, если исходный ряд расходится, то сгруппированные ряды не обязательно расходятся. Например, группировка каждых двух элементов ряда Гранди ⁠ ⁠ 1 1 + 1 1 + {\displaystyle 1-1+1-1+\cdots } создает ряд ⁠ ⁠ 0 + 0 + 0 + {\displaystyle 0+0+0+\cdots } , который сходится к нулю. В обратном направлении, расходимость нового ряда подразумевает, что исходный ряд должен быть расходящимся, поскольку это доказывает, что существует подпоследовательность частичных сумм исходного ряда, которая не сходится, что невозможно, если она сходится. Это рассуждение было применено в доказательстве Орема расходимости гармонического ряда , и оно является основой для общего теста конденсации Коши .

Абсолютная сходимость

Серия

n = 0 a n {\displaystyle \sum _{n=0}^{\infty }a_{n}}

сходится абсолютно, если ряд абсолютных значений

n = 0 | a n | {\displaystyle \sum _{n=0}^{\infty }\left|a_{n}\right|}

сходится. Этого достаточно, чтобы гарантировать не только то, что исходный ряд сходится к пределу, но и то, что любое его переупорядочение сходится к тому же пределу.

Условная сходимость

Ряд действительных или комплексных чисел называется условно сходящимся (или полусходящимся ), если он сходится, но не абсолютно сходится. Известным примером является знакопеременный ряд

n = 1 ( 1 ) n + 1 n = 1 1 2 + 1 3 1 4 + 1 5 , {\displaystyle \sum \limits _{n=1}^{\infty }{(-1)^{n+1} \over n}=1-{1 \over 2}+{1 \over 3}-{1 \over 4}+{1 \over 5}-\cdots ,}

который сходится (и его сумма равна  ), но ряд, образованный взятием абсолютного значения каждого члена, является расходящимся гармоническим рядом . Теорема Римана о рядах гласит, что любой условно сходящийся ряд можно переупорядочить, чтобы получить расходящийся ряд, и, более того, если являются действительными и — любое действительное число, то можно найти переупорядочение так, чтобы переупорядоченный ряд сходился с суммой, равной  .. [32] [33] ln 2 {\displaystyle \ln 2} a n {\displaystyle a_{n}} S {\displaystyle S} S {\displaystyle S}

Тест Абеля является важным инструментом для обработки полусходящихся рядов. Если ряд имеет вид

a n = λ n b n {\displaystyle \sum a_{n}=\sum \lambda _{n}b_{n}}

где частичные суммы ограничены, имеют ограниченную вариацию и существуют: B n = b 0 + + b n {\displaystyle B_{n}=b_{0}+\cdots +b_{n}} λ n {\displaystyle \lambda _{n}} lim λ n b n {\displaystyle \lim \lambda _{n}b_{n}}

sup N | n = 0 N b n | < ,     | λ n + 1 λ n | <   and   λ n B n   converges, {\displaystyle \sup _{N}{\Biggl |}\sum _{n=0}^{N}b_{n}{\Biggr |}<\infty ,\ \ \sum \left|\lambda _{n+1}-\lambda _{n}\right|<\infty \ {\text{and}}\ \lambda _{n}B_{n}\ {\text{converges,}}}

то ряд сходится. Это относится к поточечной сходимости многих тригонометрических рядов, как в a n {\textstyle \sum a_{n}}

n = 2 sin ( n x ) ln n {\displaystyle \sum _{n=2}^{\infty }{\frac {\sin(nx)}{\ln n}}}

с . Метод Абеля состоит в записи и выполнении преобразования, аналогичного интегрированию по частям (называемого суммированием по частям ), которое связывает заданный ряд с абсолютно сходящимся рядом 0 < x < 2 π {\displaystyle 0<x<2\pi } b n + 1 = B n + 1 B n {\displaystyle b_{n+1}=B_{n+1}-B_{n}} a n {\textstyle \sum a_{n}}

( λ n λ n + 1 ) B n . {\displaystyle \sum (\lambda _{n}-\lambda _{n+1})\,B_{n}.}

Оценка ошибок усечения

Оценка ошибок усечения является важной процедурой в численном анализе (особенно в проверенных числах и доказательствах с помощью компьютера ).

Переменный ряд

Когда условия теста чередующегося ряда удовлетворяются , существует точная оценка ошибки. [34] Положим в качестве частичной суммы данного чередующегося ряда . Тогда справедливо следующее неравенство: S := m = 0 ( 1 ) m u m {\textstyle S:=\sum _{m=0}^{\infty }(-1)^{m}u_{m}} s n {\displaystyle s_{n}} s n := m = 0 n ( 1 ) m u m {\textstyle s_{n}:=\sum _{m=0}^{n}(-1)^{m}u_{m}} S {\displaystyle S} | S s n | u n + 1 . {\displaystyle |S-s_{n}|\leq u_{n+1}.}

Гипергеометрический ряд

Используя отношение , мы можем получить оценку погрешности при усечении гипергеометрического ряда . [35]

Матрица экспоненциальная

Для матричной экспоненты :

exp ( X ) := k = 0 1 k ! X k , X C n × n , {\displaystyle \exp(X):=\sum _{k=0}^{\infty }{\frac {1}{k!}}X^{k},\quad X\in \mathbb {C} ^{n\times n},}

выполняется следующая оценка ошибки (метод масштабирования и возведения в квадрат): [36] [37] [38]

T r , s ( X ) := ( j = 0 r 1 j ! ( X / s ) j ) s , exp ( X ) T r , s ( X ) X r + 1 s r ( r + 1 ) ! exp ( X ) . {\displaystyle T_{r,s}(X):={\biggl (}\sum _{j=0}^{r}{\frac {1}{j!}}(X/s)^{j}{\biggr )}^{s},\quad {\bigl \|}\exp(X)-T_{r,s}(X){\bigr \|}\leq {\frac {\|X\|^{r+1}}{s^{r}(r+1)!}}\exp(\|X\|).}

Тесты на сходимость

Существует множество тестов, которые можно использовать для определения сходимости или расходимости конкретных рядов.

  • Тест на n-й член : Если, то ряд расходится; если, то тест неубедителен. lim n a n 0 {\textstyle \lim _{n\to \infty }a_{n}\neq 0} lim n a n = 0 {\textstyle \lim _{n\to \infty }a_{n}=0}
  • Сравнительный тест 1 (см. Тест прямого сравнения ): Если — абсолютно сходящийся ряд, такой что для некоторого числа и для достаточно большого , то также абсолютно сходится. Если расходится и для всех достаточно больших , то также не сходится абсолютно (хотя он все еще может быть условно сходящимся, например, если знак альтернируется). b n {\textstyle \sum b_{n}} | a n | C | b n | {\displaystyle \left\vert a_{n}\right\vert \leq C\left\vert b_{n}\right\vert } C {\displaystyle C} n {\displaystyle n} a n {\textstyle \sum a_{n}} | b n | {\textstyle \sum \left\vert b_{n}\right\vert } | a n | | b n | {\displaystyle \left\vert a_{n}\right\vert \geq \left\vert b_{n}\right\vert } n {\displaystyle n} a n {\textstyle \sum a_{n}} a n {\displaystyle a_{n}}
  • Сравнительный тест 2 (см. Предельный сравнительный тест ): Если — абсолютно сходящийся ряд, такой что для достаточно больших , то также абсолютно сходится. Если расходится, и для всех достаточно больших , то также не сходится абсолютно (хотя он все еще может быть условно сходящимся, например, если знак альтернируется). b n {\textstyle \sum b_{n}} | a n + 1 a n | | b n + 1 b n | {\displaystyle \left\vert {\tfrac {a_{n+1}}{a_{n}}}\right\vert \leq \left\vert {\tfrac {b_{n+1}}{b_{n}}}\right\vert } n {\displaystyle n} a n {\textstyle \sum a_{n}} | b n | {\textstyle \sum \left|b_{n}\right|} | a n + 1 a n | | b n + 1 b n | {\displaystyle \left\vert {\tfrac {a_{n+1}}{a_{n}}}\right\vert \geq \left\vert {\tfrac {b_{n+1}}{b_{n}}}\right\vert } n {\displaystyle n} a n {\textstyle \sum a_{n}} a n {\displaystyle a_{n}}
  • Тест отношения : Если существует константа такая, что для всех достаточно больших  , то сходится абсолютно. Когда отношение меньше , но не меньше константы, меньшей , сходимость возможна, но этот тест ее не устанавливает. C < 1 {\displaystyle C<1} | a n + 1 a n | < C {\displaystyle \left\vert {\tfrac {a_{n+1}}{a_{n}}}\right\vert <C} n {\displaystyle n} a n {\textstyle \sum a_{n}} 1 {\displaystyle 1} 1 {\displaystyle 1}
  • Проверка корня : если существует константа такая, что для всех достаточно больших  , то сходится абсолютно. C < 1 {\displaystyle C<1} | a n | 1 / n C {\displaystyle \textstyle \left\vert a_{n}\right\vert ^{1/n}\leq C} n {\displaystyle n} a n {\textstyle \sum a_{n}}
  • Интегральный тест : если — положительная монотонно убывающая функция, определенная на интервале с для всех  , то сходится тогда и только тогда, когда интеграл конечен. f ( x ) {\displaystyle f(x)} [ 1 , ) {\displaystyle [1,\infty )} f ( n ) = a n {\displaystyle f(n)=a_{n}} n {\displaystyle n} a n {\textstyle \sum a_{n}} 1 f ( x ) d x {\textstyle \int _{1}^{\infty }f(x)\,dx}
  • Тест на конденсацию Коши : если неотрицательно и не возрастает, то два ряда и имеют одинаковую природу: оба сходящиеся или оба расходящиеся. a n {\displaystyle a_{n}} a n {\textstyle \sum a_{n}} 2 k a ( 2 k ) {\textstyle \sum 2^{k}a_{(2^{k})}}
  • Тест на знакопеременный ряд : Ряд вида (с ) называется знакопеременным . Такой ряд сходится, если последовательность монотонно убывает и сходится к  . Обратное в общем случае неверно. ( 1 ) n a n {\textstyle \sum (-1)^{n}a_{n}} a n > 0 {\displaystyle a_{n}>0} a n {\displaystyle a_{n}} 0 {\displaystyle 0}
  • Для некоторых конкретных типов рядов существуют более специализированные тесты сходимости, например, для рядов Фурье существует тест Дини .

Ряд функций

Ряд действительных или комплексных функций

n = 0 f n ( x ) {\displaystyle \sum _{n=0}^{\infty }f_{n}(x)}

поточечно сходится к пределу ƒ ( x ) на множестве E, если ряд сходится для каждого x в E как ряд действительных или комплексных чисел. Эквивалентно, частичные суммы

s N ( x ) = n = 0 N f n ( x ) {\displaystyle s_{N}(x)=\sum _{n=0}^{N}f_{n}(x)}

сходятся к ƒ ( x ) при N  → ∞ для каждого x  ∈  E .

Более сильным понятием сходимости ряда функций является равномерная сходимость . Ряд сходится равномерно в множестве , если он сходится поточечно к функции ƒ ( x ) в каждой точке и супремум этих поточечных ошибок приближения предела N- й частичной суммой, E {\displaystyle E} E {\displaystyle E}

sup x E | s N ( x ) f ( x ) | {\displaystyle \sup _{x\in E}{\bigl |}s_{N}(x)-f(x){\bigr |}}

сходится к нулю с ростом N , независимо от x .

Равномерная сходимость желательна для ряда, поскольку многие свойства членов ряда сохраняются пределом. Например, если ряд непрерывных функций сходится равномерно, то предельная функция также непрерывна. Аналогично, если ƒ n интегрируемы на замкнутом и ограниченном интервале I и сходятся равномерно, то ряд также интегрируем на I и может быть проинтегрирован почленно. Тесты на равномерную сходимость включают M -тест Вейерштрасса , тест равномерной сходимости Абеля , тест Дини и критерий Коши .

Более сложные типы сходимости ряда функций также могут быть определены. В теории меры , например, ряд функций сходится почти всюду, если он сходится поточечно, за исключением множества меры нуль . Другие режимы сходимости зависят от другой структуры метрического пространства на пространстве рассматриваемых функций . Например, ряд функций сходится в среднем к предельной функции ƒ на множестве E , если

lim N E | s N ( x ) f ( x ) | 2 d x = 0. {\displaystyle \lim _{N\rightarrow \infty }\int _{E}{\bigl |}s_{N}(x)-f(x){\bigr |}^{2}\,dx=0.}

Ряд мощности

Степенной ряд — это ряд вида

n = 0 a n ( x c ) n . {\displaystyle \sum _{n=0}^{\infty }a_{n}(x-c)^{n}.}

Ряд Тейлора в точке c функции — это степенной ряд, который во многих случаях сходится к функции в окрестности c . Например, ряд

n = 0 x n n ! {\displaystyle \sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}

представляет собой ряд Тейлора в начале координат и сходится к нему для каждого x . e x {\displaystyle e^{x}}

Если только он не сходится только при x = c , такой ряд сходится на некотором открытом круге сходимости с центром в точке c на комплексной плоскости, а также может сходиться в некоторых точках границы круга. Радиус этого круга известен как радиус сходимости , и в принципе может быть определен из асимптотики коэффициентов a n . Сходимость равномерна на замкнутых и ограниченных (то есть компактных ) подмножествах внутренней части круга сходимости: а именно, она равномерно сходится на компактных множествах .

Исторически математики, такие как Леонард Эйлер, свободно оперировали бесконечными рядами, даже если они не были сходящимися. Когда в девятнадцатом веке исчисление было поставлено на прочную и правильную основу, всегда требовались строгие доказательства сходимости рядов.

Формальный степенной ряд

Хотя многие применения степенных рядов относятся к их суммам, также возможно рассматривать степенные ряды как формальные суммы , что означает, что на самом деле не выполняются никакие операции сложения, а символ «+» является абстрактным символом конъюнкции, который не обязательно интерпретируется как соответствующий сложению. В этой обстановке интерес представляет сама последовательность коэффициентов, а не сходимость ряда. Формальные степенные ряды используются в комбинаторике для описания и изучения последовательностей , которые в противном случае трудно обработать, например, с помощью метода порождающих функций . Ряд Гильберта–Пуанкаре является формальным степенным рядом, используемым для изучения градуированных алгебр .

Даже если предел степенного ряда не рассматривается, если термины поддерживают соответствующую структуру, то можно определить такие операции, как сложение , умножение , производная , первообразная для степенных рядов «формально», рассматривая символ «+» так, как если бы он соответствовал сложению. В наиболее общей ситуации термины происходят из коммутативного кольца , так что формальный степенной ряд можно складывать почленно и умножать через произведение Коши . В этом случае алгебра формальных степенных рядов является полной алгеброй моноида натуральных чисел над базовым кольцом терминов. [39] Если базовое кольцо терминов является дифференциальной алгеброй , то алгебра формальных степенных рядов также является дифференциальной алгеброй, при этом дифференцирование выполняется почленно.

Серия Лорана

Ряды Лорана обобщают степенные ряды, допуская в ряд члены как с отрицательными, так и с положительными показателями. Ряд Лорана — это, таким образом, любой ряд вида

n = a n x n . {\displaystyle \sum _{n=-\infty }^{\infty }a_{n}x^{n}.}

Если такой ряд сходится, то в общем случае он делает это в кольце, а не в диске, и, возможно, в некоторых граничных точках. Ряд сходится равномерно на компактных подмножествах внутри кольца сходимости.

ряд Дирихле

Ряд Дирихле — это одна из форм

n = 1 a n n s , {\displaystyle \sum _{n=1}^{\infty }{a_{n} \over n^{s}},}

где sкомплексное число . Например, если все a n равны 1, то ряд Дирихле — это дзета-функция Римана

ζ ( s ) = n = 1 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.}

Как и дзета-функция, ряды Дирихле вообще играют важную роль в аналитической теории чисел . Обычно ряд Дирихле сходится, если действительная часть s больше числа, называемого абсциссой сходимости. Во многих случаях ряд Дирихле можно расширить до аналитической функции вне области сходимости с помощью аналитического продолжения . Например, ряд Дирихле для дзета-функции сходится абсолютно, когда Re( s ) > 1, но дзета-функцию можно расширить до голоморфной функции, определенной на с простым полюсом в 1. C { 1 } {\displaystyle \mathbb {C} \setminus \{1\}}

Этот ряд можно непосредственно обобщить до общего ряда Дирихле .

Тригонометрический ряд

Ряд функций, в котором члены являются тригонометрическими функциями, называется тригонометрическим рядом :

A 0 + n = 1 ( A n cos n x + B n sin n x ) . {\displaystyle A_{0}+\sum _{n=1}^{\infty }\left(A_{n}\cos nx+B_{n}\sin nx\right).}

Наиболее важным примером тригонометрического ряда является ряд Фурье функции.

История теории бесконечных рядов

Развитие бесконечных рядов

Бесконечные ряды играют важную роль в современном анализе древнегреческой философии движения , особенно в парадоксах Зенона . [40] Парадокс Ахилла и черепахи демонстрирует, что непрерывное движение потребовало бы фактической бесконечности временных мгновений, что, возможно, было абсурдом : Ахилл бежит за черепахой, но когда он достигает положения черепахи в начале гонки, черепаха достигает второго положения; когда он достигает этого второго положения, черепаха находится в третьем положении и так далее. Говорят, что Зенон утверждал, что, следовательно, Ахилл никогда не сможет достичь черепахи, и, таким образом, непрерывное движение должно быть иллюзией. Зенон разделил гонку на бесконечное множество подрас, каждая из которых требует конечного количества времени, так что общее время, необходимое Ахиллу, чтобы поймать черепаху, задается серией. Разрешение чисто математической и воображаемой стороны парадокса заключается в том, что, хотя ряд имеет бесконечное число членов, он имеет конечную сумму, которая дает время, необходимое Ахиллу, чтобы догнать черепаху. Однако в современной философии движения физическая сторона проблемы остается открытой, причем и философы, и физики сомневаются, как Зенон, в том, что пространственные движения бесконечно делимы: гипотетические согласования квантовой механики и общей теории относительности в теориях квантовой гравитации часто вводят квантования пространства -времени в масштабах Планка . [41] [42]

Греческий математик Архимед произвел первое известное суммирование бесконечного ряда методом, который до сих пор используется в области исчисления сегодня. Он использовал метод исчерпывания для вычисления площади под дугой параболы с суммированием бесконечного ряда, [5] и дал удивительно точное приближение π . [43] [44]

Математики из школы Кералы изучали бесконечные ряды около  1350 г. н.э. [ 45]

В 17 веке Джеймс Грегори работал в новой десятичной системе над бесконечными рядами и опубликовал несколько рядов Маклорена . В 1715 году общий метод построения рядов Тейлора для всех функций, для которых они существуют, был предоставлен Бруком Тейлором . Леонард Эйлер в 18 веке разработал теорию гипергеометрических рядов и q-рядов .

Критерии сходимости

Считается, что исследование справедливости бесконечных рядов началось с Гаусса в 19 веке. Эйлер уже рассматривал гипергеометрический ряд

1 + α β 1 γ x + α ( α + 1 ) β ( β + 1 ) 1 2 γ ( γ + 1 ) x 2 + {\displaystyle 1+{\frac {\alpha \beta }{1\cdot \gamma }}x+{\frac {\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}}x^{2}+\cdots }

по этому поводу Гаусс опубликовал мемуар в 1812 году. В нем были установлены более простые критерии сходимости, а также вопросы остатков и области сходимости.

Коши (1821) настаивал на строгих тестах сходимости; он показал, что если два ряда сходятся, то их произведение не обязательно сходится, и с него начинается открытие эффективных критериев. Термины «сходимость» и «расходимость» были введены задолго до этого Грегори (1668). Леонард Эйлер и Гаусс дали различные критерии, а Колин Маклорен предвосхитил некоторые открытия Коши. Коши продвинул теорию степенных рядов , разложив комплексную функцию в такой форме.

Абель (1826) в своих мемуарах о биномиальном ряде

1 + m 1 ! x + m ( m 1 ) 2 ! x 2 + {\displaystyle 1+{\frac {m}{1!}}x+{\frac {m(m-1)}{2!}}x^{2}+\cdots }

исправил некоторые выводы Коши и дал вполне научное суммирование рядов для комплексных значений и . Он показал необходимость рассмотрения вопроса о непрерывности в вопросах сходимости. m {\displaystyle m} x {\displaystyle x}

Методы Коши привели к частным, а не общим критериям, и то же самое можно сказать о Раабе (1832), который провел первое подробное исследование предмета, о Де Моргане (с 1842), чей логарифмический тест Дюбуа-Реймона (1873) и Прингсгейма (1889) показал, что он не работает в определенной области; о Бертране (1842), Бонне (1843), Мальмстене (1846, 1847, последний без интегрирования); Стоксе (1847), Паукере (1852), Чебышеве (1852) и Арндте (1853).

Общие критерии были начаты Куммером (1835) и изучались Эйзенштейном (1847), Вейерштрассом в его различных работах по теории функций, Дини (1867), Дюбуа-Реймоном (1873) и многими другими. Мемуары Прингсгейма (1889) представляют наиболее полную общую теорию.

Равномерная сходимость

Теория равномерной сходимости была рассмотрена Коши (1821), на его ограничения указал Абель, но первыми, кто успешно на нее напал, были Зейдель и Стокс (1847–48). Коши снова занялся этой проблемой (1853), признав критику Абеля и придя к тем же выводам, которые уже сделал Стокс. Томае использовал доктрину (1866), но была большая задержка в признании важности различия между равномерной и неравномерной сходимостью, несмотря на требования теории функций.

Полуконвергенция

Ряд называется полусходящимся (или условно сходящимся), если он сходится, но не абсолютно .

Полусходящиеся ряды изучались Пуассоном (1823), который также дал общую форму для остатка формулы Маклорена. Однако самое важное решение проблемы принадлежит Якоби (1834), который атаковал вопрос об остатке с другой точки зрения и пришел к другой формуле. Это выражение также было разработано и дано другим Мальмстеном ( 1847). Шлемильх ( Zeitschrift , Vol.I, p. 192, 1856) также улучшил остаток Якоби и показал связь между остатком и функцией Бернулли

F ( x ) = 1 n + 2 n + + ( x 1 ) n . {\displaystyle F(x)=1^{n}+2^{n}+\cdots +(x-1)^{n}.}

Дженокки (1852) внес дальнейший вклад в эту теорию.

Среди ранних авторов был Вронский , чей «loi suprême» (1815) был едва ли признан, пока Кейли (1873) не вывел его на первый план.

ряд Фурье

Ряды Фурье исследовались как результат физических соображений в то же самое время, когда Гаусс, Абель и Коши разрабатывали теорию бесконечных рядов. Ряды для разложения синусов и косинусов, кратных дуг по степеням синуса и косинуса дуги рассматривались Якобом Бернулли (1702) и его братом Иоганном Бернулли (1701), а еще раньше — Виетой . Эйлер и Лагранж упростили предмет, как и Пуансо , Шретер , Глейшер и Куммер .

Фурье (1807) поставил перед собой другую задачу — разложить заданную функцию x по синусам или косинусам кратных x , — задачу, которую он воплотил в своей работе «Аналитическая теория тепла» (1822). Эйлер уже дал формулы для определения коэффициентов ряда; Фурье был первым, кто утверждал и пытался доказать общую теорему. Пуассон (1820–23) также атаковал проблему с другой точки зрения. Фурье, однако, не решил вопрос о сходимости своего ряда, вопрос, который Коши (1826) должен был попытаться решить, а Дирихле (1829) — полностью научным образом (см. сходимость рядов Фурье ). Обработка Дирихле ( Крелль , 1829) тригонометрических рядов была предметом критики и усовершенствования Риманом (1854), Гейне, Липшицем , Шлефли и дю Буа-Реймоном . Среди других выдающихся авторов теории тригонометрических рядов и рядов Фурье были Дини , Эрмит , Хальфен , Краузе, Байерли и Аппель .

Обобщения

Асимптотический ряд

Асимптотические ряды , иначе асимптотические разложения , — это бесконечные ряды, частичные суммы которых становятся хорошими приближениями в пределе некоторой точки области. В общем случае они не сходятся, но полезны как последовательности приближений, каждое из которых дает значение, близкое к желаемому ответу для конечного числа членов. Разница в том, что асимптотический ряд нельзя заставить давать ответ настолько точный, насколько это требуется, как это делают сходящиеся ряды. Фактически, после определенного числа членов типичный асимптотический ряд достигает своего наилучшего приближения; если включить больше членов, большинство таких рядов будут давать худшие ответы.

Расходящиеся ряды

Во многих случаях желательно назначить предел ряду, который не сходится в обычном смысле. Метод суммирования — это такое назначение предела подмножеству множества расходящихся рядов, которое должным образом расширяет классическое понятие сходимости. Методы суммирования включают суммирование Чезаро , суммирование ( C , k ), суммирование Абеля и суммирование Бореля в порядке возрастания общности (и, следовательно, применимое к все более расходящимся рядам).

Известно множество общих результатов, касающихся возможных методов суммирования. Теорема Сильвермана–Теплица характеризует матричные методы суммирования , которые являются методами суммирования расходящегося ряда путем применения бесконечной матрицы к вектору коэффициентов. Наиболее общий метод суммирования расходящегося ряда является неконструктивным и касается пределов Банаха .

Суммирование по произвольным наборам индексов

Определения могут быть даны для сумм по произвольному набору индексов [46] Есть два основных отличия от обычного понятия ряда: во-первых, нет определенного порядка, заданного на наборе ; во-вторых, этот набор может быть несчетным. Понятие сходимости необходимо усилить, поскольку концепция условной сходимости зависит от упорядочения набора индексов. I . {\displaystyle I.} I {\displaystyle I} I {\displaystyle I}

Если — функция из набора индексов в набор, то «ряд», связанный с — это формальная сумма элементов по элементам индекса, обозначенная как a : I G {\displaystyle a:I\mapsto G} I {\displaystyle I} G , {\displaystyle G,} a {\displaystyle a} a ( x ) G {\displaystyle a(x)\in G} x I {\displaystyle x\in I}

x I a ( x ) . {\displaystyle \sum _{x\in I}a(x).}

Когда набор индексов — это натуральные числа, функция представляет собой последовательность, обозначенную как Ряд, индексированный по натуральным числам, является упорядоченной формальной суммой, и поэтому мы переписываем как , чтобы подчеркнуть упорядоченность, вызванную натуральными числами. Таким образом, мы получаем общее обозначение для ряда, индексированного по натуральным числам I = N , {\displaystyle I=\mathbb {N} ,} a : N G {\displaystyle a:\mathbb {N} \mapsto G} a ( n ) = a n . {\displaystyle a(n)=a_{n}.} n N {\textstyle \sum _{n\in \mathbb {N} }} n = 0 {\textstyle \sum _{n=0}^{\infty }}

n = 0 a n = a 0 + a 1 + a 2 + . {\displaystyle \sum _{n=0}^{\infty }a_{n}=a_{0}+a_{1}+a_{2}+\cdots .}

Семейства неотрицательных чисел

При суммировании семейства неотрицательных действительных чисел определите { a i : i I } {\displaystyle \left\{a_{i}:i\in I\right\}}

i I a i = sup { i A a i : A I , A  finite } [ 0 , + ] . {\displaystyle \sum _{i\in I}a_{i}=\sup {\biggl \{}\sum _{i\in A}a_{i}\,:A\subseteq I,A{\text{ finite}}{\biggr \}}\in [0,+\infty ].}

Когда супремум конечен, то множество таких, что счетно. Действительно, для каждого мощность множества конечна, поскольку i I {\displaystyle i\in I} a i > 0 {\displaystyle a_{i}>0} n 1 , {\displaystyle n\geq 1,} | A n | {\displaystyle \left|A_{n}\right|} A n = { i I : a i > 1 / n } {\displaystyle A_{n}=\left\{i\in I:a_{i}>1/n\right\}}

1 n | A n | = i A n 1 n i A n a i i I a i < . {\displaystyle {\frac {1}{n}}\,\left|A_{n}\right|=\sum _{i\in A_{n}}{\frac {1}{n}}\leq \sum _{i\in A_{n}}a_{i}\leq \sum _{i\in I}a_{i}<\infty .}

Если счетно бесконечно и занумеровано как , то определенная выше сумма удовлетворяет условию I {\displaystyle I} I = { i 0 , i 1 , } {\displaystyle I=\left\{i_{0},i_{1},\ldots \right\}}

i I a i = k = 0 a i k , {\displaystyle \sum _{i\in I}a_{i}=\sum _{k=0}^{\infty }a_{i_{k}},} при условии, что значение допускается для суммы ряда. {\displaystyle \infty }

Любую сумму по неотрицательным действительным числам можно понимать как интеграл неотрицательной функции относительно меры подсчета , что объясняет многочисленные сходства между двумя конструкциями.

Абелевы топологические группы

Пусть будет отображением, также обозначаемым как из некоторого непустого множества в хаусдорфову абелеву топологическую группу Пусть будет совокупностью всех конечных подмножеств с рассматриваемым как направленное множество , упорядоченное относительно включения с объединением в качестве соединения . Семейство называется безусловно суммируемым, если следующий предел , который обозначается как и называется суммой , существует в a : I X {\displaystyle a:I\to X} ( a i ) i I , {\displaystyle \left(a_{i}\right)_{i\in I},} I {\displaystyle I} X . {\displaystyle X.} Finite ( I ) {\displaystyle \operatorname {Finite} (I)} I , {\displaystyle I,} Finite ( I ) {\displaystyle \operatorname {Finite} (I)} {\displaystyle \,\subseteq \,} ( a i ) i I , {\displaystyle \left(a_{i}\right)_{i\in I},} i I a i {\displaystyle \sum _{i\in I}a_{i}} ( a i ) i I , {\displaystyle \left(a_{i}\right)_{i\in I},} X : {\displaystyle X:}

i I a i := lim A Finite ( I )   i A a i = lim { i A a i : A I , A  finite  } {\displaystyle \sum _{i\in I}a_{i}:=\lim _{A\in \operatorname {Finite} (I)}\ \sum _{i\in A}a_{i}=\lim {\biggl \{}\sum _{i\in A}a_{i}\,:A\subseteq I,A{\text{ finite }}{\biggr \}}} Утверждение, что сумма является пределом конечных частичных сумм, означает, что для каждой окрестности начала координат в существует конечное подмножество такое , что S := i I a i {\displaystyle \textstyle S:=\sum _{i\in I}a_{i}} V {\displaystyle V} X , {\displaystyle X,} A 0 {\displaystyle A_{0}} I {\displaystyle I}

S i A a i V  for every finite superset A A 0 . {\displaystyle S-\sum _{i\in A}a_{i}\in V\qquad {\text{ for every finite superset}}\;A\supseteq A_{0}.}

Поскольку не полностью упорядочено , это не предел последовательности частичных сумм, а скорее предел сети . [47] [48] Finite ( I ) {\displaystyle \operatorname {Finite} (I)}

Для каждой окрестности начала координат в существует меньшая окрестность такая, что Отсюда следует, что конечные частичные суммы безусловно суммируемого семейства образуют сеть Коши , то есть для каждой окрестности начала координат в существует конечное подмножество из такое, что W {\displaystyle W} X , {\displaystyle X,} V {\displaystyle V} V V W . {\displaystyle V-V\subseteq W.} ( a i ) i I , {\displaystyle \left(a_{i}\right)_{i\in I},} W {\displaystyle W} X , {\displaystyle X,} A 0 {\displaystyle A_{0}} I {\displaystyle I}

i A 1 a i i A 2 a i W  for all finite supersets  A 1 , A 2 A 0 , {\displaystyle \sum _{i\in A_{1}}a_{i}-\sum _{i\in A_{2}}a_{i}\in W\qquad {\text{ for all finite supersets }}\;A_{1},A_{2}\supseteq A_{0},} что подразумевает, что для каждого (взяв и ). a i W {\displaystyle a_{i}\in W} i I A 0 {\displaystyle i\in I\setminus A_{0}} A 1 := A 0 { i } {\displaystyle A_{1}:=A_{0}\cup \{i\}} A 2 := A 0 {\displaystyle A_{2}:=A_{0}}

Когда является полным , семейство безусловно суммируемо в тогда и только тогда, когда конечные суммы удовлетворяют последнему условию сети Коши. Когда является полным и безусловно суммируемо в тогда для каждого подмножества соответствующее подсемейство также безусловно суммируемо в X {\displaystyle X} ( a i ) i I {\displaystyle \left(a_{i}\right)_{i\in I}} X {\displaystyle X} X {\displaystyle X} ( a i ) i I , {\displaystyle \left(a_{i}\right)_{i\in I},} X , {\displaystyle X,} J I , {\displaystyle J\subseteq I,} ( a j ) j J , {\displaystyle \left(a_{j}\right)_{j\in J},} X . {\displaystyle X.}

Когда сумма семейства неотрицательных чисел, в расширенном смысле, определенном ранее, конечна, то она совпадает с суммой в топологической группе X = R . {\displaystyle X=\mathbb {R} .}

Если семейство в безусловно суммируемо, то для любой окрестности начала отсчета в существует конечное подмножество такое, что для любого индекса, не в Если — пространство с первой абелевой счетностью , то из этого следует, что множество таких, что счетно. Это не обязательно должно быть верно в общей абелевой топологической группе (см. примеры ниже). ( a i ) i I {\displaystyle \left(a_{i}\right)_{i\in I}} X {\displaystyle X} W {\displaystyle W} X , {\displaystyle X,} A 0 I {\displaystyle A_{0}\subseteq I} a i W {\displaystyle a_{i}\in W} i {\displaystyle i} A 0 . {\displaystyle A_{0}.} X {\displaystyle X} i I {\displaystyle i\in I} a i 0 {\displaystyle a_{i}\neq 0}

Безусловно сходящийся ряд

Предположим, что если семейство безусловно суммируемо в хаусдорфовой абелевой топологической группе, то ряд в обычном смысле сходится и имеет ту же сумму, I = N . {\displaystyle I=\mathbb {N} .} a n , n N , {\displaystyle a_{n},n\in \mathbb {N} ,} X , {\displaystyle X,}

n = 0 a n = n N a n . {\displaystyle \sum _{n=0}^{\infty }a_{n}=\sum _{n\in \mathbb {N} }a_{n}.}

По своей природе определение безусловной суммируемости нечувствительно к порядку суммирования. Когда является безусловно суммируемой, то ряд остается сходящимся после любой перестановки набора индексов, с той же суммой, a n {\displaystyle \textstyle \sum a_{n}} σ : N N {\displaystyle \sigma :\mathbb {N} \to \mathbb {N} } N {\displaystyle \mathbb {N} }

n = 0 a σ ( n ) = n = 0 a n . {\displaystyle \sum _{n=0}^{\infty }a_{\sigma (n)}=\sum _{n=0}^{\infty }a_{n}.}

Наоборот, если каждая перестановка ряда сходится, то ряд безусловно сходится. Когда является полным, то безусловная сходимость также эквивалентна тому факту, что все подряды сходятся; если является банаховым пространством , это эквивалентно тому, что для каждой последовательности знаков ряд a n {\displaystyle \textstyle \sum a_{n}} X {\displaystyle X} X {\displaystyle X} ε n = ± 1 {\displaystyle \varepsilon _{n}=\pm 1}

n = 0 ε n a n {\displaystyle \sum _{n=0}^{\infty }\varepsilon _{n}a_{n}}

сходится в X . {\displaystyle X.}

Ряды в топологических векторных пространствах

Если — топологическое векторное пространство (TVS) и — (возможно, несчетное ) семейство в , то это семейство суммируемо [49], если предел сети существует в , где — направленное множество всех конечных подмножеств направленного по включению и X {\displaystyle X} ( x i ) i I {\displaystyle \left(x_{i}\right)_{i\in I}} X {\displaystyle X} lim A Finite ( I ) x A {\displaystyle \textstyle \lim _{A\in \operatorname {Finite} (I)}x_{A}} ( x A ) A Finite ( I ) {\displaystyle \left(x_{A}\right)_{A\in \operatorname {Finite} (I)}} X , {\displaystyle X,} Finite ( I ) {\displaystyle \operatorname {Finite} (I)} I {\displaystyle I} {\displaystyle \,\subseteq \,} x A := i A x i . {\textstyle x_{A}:=\sum _{i\in A}x_{i}.}

Он называется абсолютно суммируемым, если, кроме того, для всякая непрерывная полунорма на семействе суммируема. Если — нормируемое пространство и если — абсолютно суммируемое семейство в , то обязательно все , кроме счетного набора , равны нулю. Следовательно, в нормированных пространствах обычно всегда необходимо рассматривать только ряды со счетным числом членов. p {\displaystyle p} X , {\displaystyle X,} ( p ( x i ) ) i I {\displaystyle \left(p\left(x_{i}\right)\right)_{i\in I}} X {\displaystyle X} ( x i ) i I {\displaystyle \left(x_{i}\right)_{i\in I}} X , {\displaystyle X,} x i {\displaystyle x_{i}}

Суммируемые семейства играют важную роль в теории ядерных пространств .

Ряды в банаховых и полунормированных пространствах

Понятие ряда легко можно распространить на случай полунормированного пространства . Если — последовательность элементов нормированного пространства и если то ряд сходится к в , если последовательность частичных сумм ряда сходится к в ; а именно, x n {\displaystyle x_{n}} X {\displaystyle X} x X {\displaystyle x\in X} x n {\displaystyle \textstyle \sum x_{n}} x {\displaystyle x} X {\displaystyle X} ( n = 0 N x n ) N = 1 {\textstyle {\bigl (}\sum _{n=0}^{N}x_{n}{\bigr )}_{N=1}^{\infty }} x {\displaystyle x} X {\displaystyle X}

x n = 0 N x n 0  as  N . {\displaystyle {\Biggl \|}x-\sum _{n=0}^{N}x_{n}{\Biggr \|}\to 0\quad {\text{ as }}N\to \infty .}

В более общем смысле сходимость рядов может быть определена в любой абелевой хаусдорфовой топологической группе . В частности, в этом случае сходится к , если последовательность частичных сумм сходится к x n {\displaystyle \textstyle \sum x_{n}} x {\displaystyle x} x . {\displaystyle x.}

Если — полунормированное пространство , то понятие абсолютной сходимости принимает вид: ряд векторов в сходится абсолютно, если ( X , | | ) {\displaystyle (X,|\cdot |)} i I x i {\textstyle \sum _{i\in I}x_{i}} X {\displaystyle X}

i I | x i | < + {\displaystyle \sum _{i\in I}\left|x_{i}\right|<+\infty }

в этом случае все значения, за исключением, самое большее, счетного числа, обязательно равны нулю. | x i | {\displaystyle \left|x_{i}\right|}

Если счетный ряд векторов в банаховом пространстве сходится абсолютно, то он сходится безусловно, но обратное справедливо только в конечномерных банаховых пространствах (теорема Дворецкого и Роджерса (1950)).

Хорошо упорядоченные суммы

Условно сходящийся ряд можно считать, если — вполне упорядоченное множество, например, порядковое число. В этом случае определим с помощью трансфинитной рекурсии : I {\displaystyle I} α 0 . {\displaystyle \alpha _{0}.}

β < α + 1 a β = a α + β < α a β {\displaystyle \sum _{\beta <\alpha +1}a_{\beta }=a_{\alpha }+\sum _{\beta <\alpha }a_{\beta }}

и для предельного ординала α , {\displaystyle \alpha ,}

β < α a β = lim γ α β < γ a β {\displaystyle \sum _{\beta <\alpha }a_{\beta }=\lim _{\gamma \to \alpha }\sum _{\beta <\gamma }a_{\beta }}

если этот предел существует. Если все пределы существуют до , то ряд сходится. α 0 , {\displaystyle \alpha _{0},}

Примеры

  1. Дана функция в абелевой топологической группе, определяемая для каждого f : X Y {\displaystyle f:X\to Y} Y , {\displaystyle Y,} a X , {\displaystyle a\in X,} f a ( x ) = { 0 x a , f ( a ) x = a , {\displaystyle f_{a}(x)={\begin{cases}0&x\neq a,\\f(a)&x=a,\\\end{cases}}}

функция, поддержка которой является синглтоном Тогда { a } . {\displaystyle \{a\}.}

f = a X f a {\displaystyle f=\sum _{a\in X}f_{a}}

в топологии поточечной сходимости (то есть сумма берется в бесконечной группе произведений ). Y X {\displaystyle Y^{X}}

  1. В определении разбиений единицы строятся суммы функций по произвольному набору индексов I , {\displaystyle I,} i I φ i ( x ) = 1. {\displaystyle \sum _{i\in I}\varphi _{i}(x)=1.}

Хотя формально это требует понятия сумм несчетных рядов, по построению для каждого данного существует только конечное число ненулевых членов в сумме, поэтому вопросы, касающиеся сходимости таких сумм, не возникают. На самом деле, обычно предполагают больше: семейство функций локально конечно , то есть для каждого существует окрестность , в которой все, кроме конечного числа функций, обращаются в нуль. Любое свойство регулярности , такое как непрерывность, дифференцируемость, которое сохраняется при конечных суммах, сохранится и для суммы любого подмножества этого семейства функций. x , {\displaystyle x,} x {\displaystyle x} x {\displaystyle x} φ i , {\displaystyle \varphi _{i},}

  1. На первом несчетном ординале, рассматриваемом как топологическое пространство в топологии порядка , постоянная функция, заданная уравнением , удовлетворяет условию ω 1 {\displaystyle \omega _{1}} f : [ 0 , ω 1 ) [ 0 , ω 1 ] {\displaystyle f:\left[0,\omega _{1}\right)\to \left[0,\omega _{1}\right]} f ( α ) = 1 {\displaystyle f(\alpha )=1} α [ 0 , ω 1 ) f ( α ) = ω 1 {\displaystyle \sum _{\alpha \in [0,\omega _{1})}f(\alpha )=\omega _{1}}

(другими словами, копии 1 есть ) только если взять предел по всем счетным частичным суммам, а не по конечным частям. Это пространство не является сепарабельным. ω 1 {\displaystyle \omega _{1}} ω 1 {\displaystyle \omega _{1}}

Смотрите также

Ссылки

  1. ^ Томпсон, Сильванус ; Гарднер, Мартин (1998). Calculus Made Easy. Macmillan. ISBN 978-0-312-18548-0.
  2. ^ Хаггетт, Ник (2024), «Парадоксы Зенона», в Zalta, Эдвард Н.; Nodelman, Ури (ред.), The Stanford Encyclopedia of Philosophy (изд. весна 2024 г.), Metaphysics Research Lab, Stanford University , получено 25.03.2024
  3. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. С. 374–375. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  4. ^ Свейн, Гордон; Денс, Томас (1998). «Повторный взгляд на квадратуру параболы Архимеда». Mathematics Magazine . 71 (2): 123–130. doi :10.2307/2691014. ISSN  0025-570X. JSTOR  2691014.
  5. ^ ab Russo, Lucio (2004). Забытая революция . Перевод Levy, Silvio. Германия: Springer-Verlag. стр. 49–52. ISBN 978-3-540-20396-4.{{cite book}}: CS1 maint: date and year (link)
  6. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 377. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  7. ^ Апостол, Том М. (1967). Исчисление . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 378. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  8. ^ abc Apostol, Tom M. (1967). Calculus . Vol. 1 (2nd ed.). США: John Wiley & Sons. стр. 37. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  9. ^ abcdef Спивак, Майкл (2008). Calculus (4-е изд.). Хьюстон, Техас, США: Publish or Perish, Inc. стр. 471–472. ISBN 978-0-914098-91-1.{{cite book}}: CS1 maint: date and year (link)
  10. ^ abcde Apostol, Tom M. (1967). Calculus . Vol. 1 (2nd ed.). США: John Wiley & Sons. стр. 384. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  11. ^ abcdef Ablowitz, Mark J.; Fokas, Athanassios S. (2003). Complex Variables: Introduction and Applications (2nd ed.). США: Cambridge University Press. стр. 110. ISBN 978-0-521-53429-1.{{cite book}}: CS1 maint: date and year (link)
  12. ^ ab Даммит, Дэвид С.; Фут, Ричард М. (2004). Абстрактная алгебра (3-е изд.). Хобокен, Нью-Джерси, США: John Wiley and Sons. стр. 238. ISBN 978-0-471-43334-7.{{cite book}}: CS1 maint: date and year (link)
  13. ^ abcd Спивак, Майкл (2008). Calculus (4-е изд.). Хьюстон, Техас, США: Publish or Perish, Inc. стр. 486–487, 493. ISBN 978-0-914098-91-1.{{cite book}}: CS1 maint: date and year (link)
  14. ^ ab Wilf, Herbert S. (1990). Generatingfunctionology . Сан-Диего, Калифорния, США: Academic Press. стр. 27–28. ISBN 978-1-48-324857-8.{{cite book}}: CS1 maint: date and year (link)
  15. ^ Свокоски, Эрл В. (1983). Исчисление с аналитической геометрией (альтернативный редактор). Бостон: Prindle, Weber & Schmidt. стр. 501. ISBN 978-0-87150-341-1.{{cite book}}: CS1 maint: date and year (link)
  16. ^ Спивак, Майкл (2008). Calculus (4-е изд.). Хьюстон, Техас, США: Publish or Perish, Inc. стр. 426. ISBN 978-0-914098-91-1.{{cite book}}: CS1 maint: date and year (link)
  17. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 281. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  18. ^ abcd Спивак, Майкл (2008). Calculus (4-е изд.). Хьюстон, Техас, США: Publish or Perish, Inc. стр. 473–478. ISBN 978-0-914098-91-1.{{cite book}}: CS1 maint: date and year (link)
  19. ^ abcd Апостол, Том М. (1967). Исчисление . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 388–390, 399–401. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  20. ^ Спивак, Майкл (2008). Calculus (4-е изд.). Хьюстон, Техас, США: Publish or Perish, Inc. стр. 453. ISBN 978-0-914098-91-1.{{cite book}}: CS1 maint: date and year (link)
  21. ^ Кнут, Дональд Э. (1992). «Две заметки о нотации». American Mathematical Monthly . 99 (5): 403–422. doi :10.2307/2325085. JSTOR  2325085 – через JSTOR.
  22. ^ Аткинсон, Кендалл Э. (1989). Введение в численный анализ (2-е изд.). Нью-Йорк: Wiley. стр. 20. ISBN 978-0-471-62489-9. OCLC  803318878.
  23. ^ Стоер, Йозеф; Булирш, Роланд (2002), Введение в числовой анализ (3-е изд.), Принстон, Нью-Джерси: Запись для слепых и дислексиков, OCLC  50556273 , получено 08.02.2022
  24. ^ Уилкинс, Дэвид (2007). "Раздел 6: Расширенная система действительных чисел" (PDF) . maths.tcd.ie . Получено 2019-12-03 .
  25. ^ ab Apostol, Tom M. (1967). Calculus . Vol. 1 (2nd ed.). США: John Wiley & Sons. стр. 385–386. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  26. ^ abc Сафф, Э.Б.; Снайдер, Артур Д. (2003). Основы комплексного анализа (3-е изд.). США: Pearson Education. стр. 247–249. ISBN 0-13-907874-6.{{cite book}}: CS1 maint: date and year (link)
  27. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 384. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  28. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. С. 403–404. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  29. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 386. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  30. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. стр. 396. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  31. ^ Гаспер, Г., Рахман, М. (2004). Основные гипергеометрические ряды. Cambridge University Press .
  32. ^ Апостол, Том М. (1967). Calculus . Т. 1 (2-е изд.). США: John Wiley & Sons. С. 413–414. ISBN 0-471-00005-1.{{cite book}}: CS1 maint: date and year (link)
  33. ^ Спивак, Майкл (2008). Calculus (4-е изд.). Хьюстон, Техас, США: Publish or Perish, Inc. стр. 483–486. ISBN 978-0-914098-91-1.{{cite book}}: CS1 maint: date and year (link)
  34. ^ Положительные и отрицательные члены: чередующиеся ряды
  35. ^ Йоханссон, Ф. (2016). Строгое вычисление гипергеометрических функций. Препринт arXiv arXiv:1606.06977.
  36. ^ Хайэм, Нью-Джерси (2008). Функции матриц: теория и вычисления. Общество промышленной и прикладной математики .
  37. ^ Хайэм, Нью-Джерси (2009). Метод масштабирования и возведения в квадрат для матричной экспоненты пересмотрен. Обзор SIAM, 51(4), 747-764.
  38. ^ Как и как не следует вычислять экспоненту матрицы
  39. ^ Николя Бурбаки (1989), Алгебра , Спрингер: §III.2.11.
  40. ^ Хаггетт, Ник (2024), «Парадоксы Зенона», в Zalta, Эдвард Н.; Nodelman, Ури (ред.), The Stanford Encyclopedia of Philosophy (изд. весна 2024 г.), Metaphysics Research Lab, Stanford University , получено 25.03.2024
  41. ^ Снайдер, Х. (1947), «Квантованное пространство-время», Physical Review , 67 (1): 38–41, Bibcode : 1947PhRv...71...38S, doi : 10.1103/PhysRev.71.38.
  42. ^ "Распутывание пространства-времени". Журнал Quanta . 2024-09-25 . Получено 2024-10-11 .
  43. ^ O'Connor, JJ & Robertson, EF (февраль 1996). "История исчисления". Университет Сент-Эндрюс . Получено 2007-08-07 .
  44. ^ К., Бидвелл, Джеймс (30 ноября 1993 г.). «Архимед и Пи-еще раз». Школьные науки и математика . 94 (3).{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ "Индейцы появились на 250 лет раньше "открытия" Ньютона". manchester.ac.uk .
  46. ^ Жан Дьедонне, Основы математического анализа , Academic Press
  47. ^ Бурбаки, Николас (1998). Общая топология: Главы 1–4 . Springer. С. 261–270. ISBN 978-3-540-64241-1.
  48. ^ Шоке, Гюстав (1966). Топология . Academic Press. С. 216–231. ISBN 978-0-12-173450-3.
  49. ^ Шефер, Хельмут Х.; Вольф, Манфред П. (1999). Топологические векторные пространства . Graduate Texts in Mathematics. Vol. 8 (2nd ed.). New York, NY: Springer. pp. 179–180. ISBN 978-1-4612-7155-0.

Библиография

  • Бромвич, Т. Дж. Введение в теорию бесконечных рядов MacMillan & Co. 1908, пересмотрено в 1926, переиздано в 1939, 1942, 1949, 1955, 1959, 1965.
  • Дворецкий, Арье; Роджерс, К. Эмброуз (1950). «Абсолютная и безусловная сходимость в нормированных линейных пространствах». Proc. Natl. Acad. Sci. USA . 36 (3): 192–197. Bibcode :1950PNAS...36..192D. doi : 10.1073/pnas.36.3.192 . PMC  1063182 . PMID  16588972.
  • Наричи, Лоуренс; Бекенштейн, Эдвард (2011). Топологические векторные пространства . Чистая и прикладная математика (Второе изд.). Бока-Ратон, Флорида: CRC Press. ISBN 978-1584888666. OCLC  144216834.
  • Своковски, Эрл В. (1983), Исчисление с аналитической геометрией (Альтернативное издание), Бостон: Prindle, Weber & Schmidt, ISBN 978-0-87150-341-1
  • Питч, Альбрехт (1972). Ядерные локально-выпуклые пространства . Берлин, Нью-Йорк: Springer-Verlag. ISBN 0-387-05644-0. OCLC  539541.
  • Робертсон, А. П. (1973). Топологические векторные пространства . Cambridge England: University Press. ISBN 0-521-29882-2. OCLC  589250.
  • Рудин, Уолтер (1964). Принципы математического анализа . (Второе изд.) Нью-Йорк, Нью-Йорк: McGraw-Hill. ISBN 0-070-54231-7.
  • Райан, Рэймонд (2002). Введение в тензорные произведения банаховых пространств . Лондон Нью-Йорк: Springer. ISBN 1-85233-437-1. OCLC  48092184.
  • Шефер, Хельмут Х.; Вольф, Манфред П. (1999). Топологические векторные пространства . GTM . Том 8 (Второе издание). Нью-Йорк, Нью-Йорк: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC  840278135.
  • Тревес, Франсуа (2006) [1967]. Топологические векторные пространства, распределения и ядра . Минеола, Нью-Йорк: Dover Publications. ISBN 978-0-486-45352-1. OCLC  853623322.
  • Вонг (1979). Пространства Шварца, ядерные пространства и тензорные произведения . Берлин Нью-Йорк: Springer-Verlag. ISBN 3-540-09513-6. OCLC  5126158.

МР 0033975

  • «Серия», Энциклопедия математики , EMS Press , 2001 [1994]
  • Учебник по бесконечным рядам
  • «Series-TheBasics». Онлайн-математические заметки Пола.
  • «Show-Me Collection of Series» (PDF) . Лесли Грин.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Series_(mathematics)&oldid=1251884365#Basic_properties"