Вводный раздел этой статьи может быть слишком коротким, чтобы адекватно суммировать основные моменты . ( Август 2021 г. ) |
Экраноплан ( GEV ), также называемый крылом-в-земле-эффекте ( WIGE или WIG ), экранопланом/машиной ( GEM ) , wingship , flarecraft, поверхностное транспортное средство или экраноплан ( русский : экранопла́н – "screenglider" ), представляет собой транспортное средство , которое способно перемещаться по поверхности, получая поддержку от реакций воздуха на поверхности земли или воды. Как правило, оно предназначено для скольжения по ровной поверхности (обычно по морю) с использованием эффекта земли , аэродинамического взаимодействия между движущимся крылом и поверхностью под ним. Некоторые модели могут работать над любой плоской поверхностью, такой как замерзшие озера или плоские равнины, подобно судну на воздушной подушке . Термин «экраноплан» первоначально относился к любому судну, использующему эффект земли, включая то, что позже стало известно как судно на воздушной подушке , в описаниях патентов в 1950-х годах. Однако в настоящее время этот термин рассматривается как отличный от транспортных средств на воздушной подушке или судов на воздушной подушке. Определение GEV не включает гоночные автомобили, использующие эффект земли для увеличения прижимной силы.
Этот раздел нуждается в дополнительных цитатах для проверки . ( Март 2018 ) |
Транспортному средству с экранным эффектом нужна некоторая скорость движения вперед для динамического создания подъемной силы, и основное преимущество работы крыла в экранном эффекте заключается в снижении его сопротивления, зависящего от подъемной силы . Основной принцип проектирования заключается в том, что чем ближе крыло работает к внешней поверхности, такой как земля, когда оно находится в экранном эффекте , тем меньшее сопротивление оно испытывает.
Проходя через воздух, аэродинамический профиль увеличивает давление воздуха на нижней стороне, одновременно уменьшая давление на верхней стороне. Высокое и низкое давление поддерживаются до тех пор, пока они не стекут с концов крыльев, где они образуют вихри, которые, в свою очередь, являются основной причиной сопротивления, вызванного подъемной силой — обычно значительной части сопротивления, воздействующего на самолет. Чем больше размах крыла, тем меньше индуцированное сопротивление создается для каждой единицы подъемной силы и тем выше эффективность конкретного крыла. Это основная причина, по которой планеры имеют длинные крылья.
Размещение того же крыла вблизи поверхности, такой как вода или земля, имеет тот же эффект, что и увеличение удлинения, поскольку земля препятствует расширению вихрей на законцовках крыла, [1] но без осложнений, связанных с длинным и тонким крылом, так что короткие обрубки на GEV могут создавать такую же подъемную силу, как и гораздо большее крыло на транспортном самолете, хотя это возможно только вблизи поверхности земли. После набора достаточной скорости некоторые GEV могут быть способны покинуть эффект земли и функционировать как обычные самолеты, пока не достигнут места назначения. Отличительной особенностью является то, что они не могут приземлиться или взлетать без значительной помощи от подушки эффекта земли и не могут набирать высоту, пока не достигнут гораздо более высокой скорости.
Иногда GEV характеризуют как переход между судном на воздушной подушке и самолетом , хотя это неверно, поскольку судно на воздушной подушке статически поддерживается подушкой из сжатого воздуха от бортового вентилятора, направленного вниз. Некоторые конструкции GEV, такие как российские Lun и Dingo , использовали принудительный обдув под крылом вспомогательными двигателями для увеличения области высокого давления под крылом для содействия взлету; однако они отличаются от судов на воздушной подушке тем, что им по-прежнему требуется поступательное движение для создания достаточной подъемной силы для полета.
Хотя GEV может выглядеть похожим на гидросамолет и иметь много общих технических характеристик, он, как правило, не предназначен для полетов вне зоны действия экрана. Он отличается от судна на воздушной подушке отсутствием возможности зависания на низкой скорости, примерно так же, как самолет с фиксированным крылом отличается от вертолета . В отличие от гидрокрыла , он не имеет никакого контакта с поверхностью воды во время «полета». Транспортное средство на основе экрана представляет собой уникальный класс транспорта.
Базирующаяся в Бостоне (США) компания REGENT предложила конструкцию высокоплана с электрическим приводом и стандартным корпусом для эксплуатации на воде, а также оснащена установленными в носовой и кормовой части гидрокрыльями , предназначенными для подъема судна из воды во время разбега, что позволяет снизить скорость взлета. [2]
Используется русским Ростиславом Алексеевым для его экраноплана. Крылья значительно короче, чем у сопоставимых самолетов, и эта конфигурация требует высоко расположенного сзади горизонтального хвоста для поддержания устойчивости. Устойчивость по тангажу и высоте достигается за счет разницы наклона подъемной силы [примечание 1] между передним низкорасположенным крылом в зоне действия земли (обычно основным крылом) и задним, более высоко расположенным вторым крылом, почти вне зоны действия земли (обычно называемым стабилизатором).
Разработанное Александром Липпишем , это крыло обеспечивает стабильный полет в экранном эффекте за счет самостабилизации. Это основная форма экраноплана класса B. Ханно Фишер позже разработал экраноплан на основе этой конфигурации, которая затем была передана нескольким компаниям в Азии, став, таким образом, одним из «стандартов» в проектировании экранопланов.
Тандемные крылья могут иметь три конфигурации:
Этот раздел нуждается в дополнительных цитатах для проверки . ( Январь 2024 ) |
Учитывая схожие размеры корпуса и мощность, а также в зависимости от его конкретной конструкции, меньшее сопротивление , вызванное подъемной силой , у экраноплана по сравнению с самолетом аналогичной грузоподъемности, улучшит его топливную экономичность и, до определенной степени, скорость. [4] Экранопланы также намного быстрее надводных судов аналогичной мощности, поскольку они избегают сопротивления воды.
На воде конструкция экранопланов, подобная конструкции самолета, увеличивает риск повреждений при столкновении с надводными объектами. Кроме того, ограниченное количество точек выхода затрудняет эвакуацию из транспортного средства в чрезвычайной ситуации. По данным WST, создателей экраноплана WSH-500, экранопланы также имеют преимущество в том, что они избегают столкновения с океанскими течениями, пролетая над ними.
Поскольку большинство GEV предназначены для работы с воды, аварии и отказ двигателя, как правило, менее опасны, чем у наземных самолетов, но отсутствие контроля высоты оставляет пилоту меньше возможностей для избежания столкновений, и в некоторой степени это сводит на нет такие преимущества. Малая высота приводит к столкновению высокоскоростных судов с судами, зданиями и возвышающейся землей, которые могут быть недостаточно видны в плохих условиях, чтобы избежать столкновения. [5] GEV могут быть неспособны подняться или повернуть достаточно резко, чтобы избежать столкновений, в то время как резкие маневры на малой высоте сопряжены с риском контакта с твердыми или водными опасностями внизу. Самолеты могут преодолевать большинство препятствий, но GEV более ограничены. [5]
При сильном ветре взлет должен быть против ветра, что переносит судно через последовательные линии волн, вызывая сильные удары, нагружая судно и создавая некомфортную езду. [6] При слабом ветре волны могут быть в любом направлении, что может затруднить управление, поскольку каждая волна заставляет транспортное средство как крениться, так и качаться. Более легкая конструкция GEV делает их способность работать при более высоких морских состояниях ниже, чем у обычных судов, но выше, чем способность судов на воздушной подушке или подводных крыльях, которые находятся ближе к поверхности воды.
Как и обычные самолеты, для взлета требуется большая мощность, и, как и гидросамолеты, экранопланы должны выйти на ступеньку, прежде чем они смогут разогнаться до скорости полета. [4] Чтобы сделать это правильно, требуется тщательное проектирование, обычно с многократными переделками форм корпуса, что увеличивает затраты на проектирование. Это препятствие сложнее преодолеть для GEV с короткими производственными партиями. Чтобы транспортное средство работало, его корпус должен быть достаточно устойчивым в продольном направлении, чтобы им можно было управлять, но не настолько устойчивым, чтобы он не мог оторваться от воды.
Днище аппарата должно быть сформировано так, чтобы избежать чрезмерного давления при посадке и взлете, не жертвуя слишком большой боковой устойчивостью, и не должно создавать слишком много брызг, которые повреждают планер и двигатели. Российские экранопланы демонстрируют доказательства исправления этих проблем в виде множественных скул на передней части днища корпуса и в переднем расположении реактивных двигателей.
Наконец, ограниченная полезность удерживала уровень производства на достаточно низком уровне, из-за чего было невозможно в достаточной степени покрыть затраты на разработку, чтобы сделать экранопланы конкурентоспособными по сравнению с обычными самолетами.
Исследование, проведенное в 2014 году студентами Исследовательского центра Эймса при НАСА, утверждает, что использование GEV для пассажирских перевозок может привести к удешевлению полетов, повышению доступности и уменьшению загрязнения. [7]
Одним из препятствий для разработки экранопланов является классификация и применяемое законодательство. Международная морская организация изучила применение правил, основанных на Международном кодексе безопасности высокоскоростных судов (код HSC), который был разработан для быстроходных судов, таких как суда на подводных крыльях , суда на воздушной подушке, катамараны и т. п. Российские правила классификации и постройки малых экранопланов типа А являются документом, на котором базируется большинство конструкций экранопланов. Однако в 2005 году ИМО классифицировала WISE или экранопланы как суда. [8]
Международная морская организация признает три типа GEV: [8]
На момент написания статьи эти классы применялись только к судам, перевозящим 12 и более пассажиров [8] , и (по состоянию на 2019 год) между национальными регулирующими органами существовали разногласия относительно того, следует ли классифицировать и регулировать эти транспортные средства как воздушные суда или как лодки. [9]
К 1920-м годам явление влияния земли стало хорошо известно, поскольку пилоты обнаружили, что их самолеты, по-видимому, становились более эффективными по мере приближения к поверхности взлетно-посадочной полосы во время посадки. В 1934 году Национальный консультативный комитет США по аэронавтике выпустил Технический меморандум 771 «Влияние земли на взлет и посадку самолетов» , который был переводом на английский язык резюме французских исследований по этой теме. Французский автор Морис Ле Сюэр добавил предложение, основанное на этом явлении: «Здесь воображению изобретателей предоставляется обширное поле. Влияние земли в значительной степени снижает мощность, необходимую для горизонтального полета, поэтому здесь представлено средство быстрого и в то же время экономичного передвижения: спроектируйте самолет, который всегда находится в зоне влияния земли. На первый взгляд этот аппарат опасен, потому что земля неровная, а высота, называемая скольжением, не допускает никакой свободы маневра. Но на крупногабаритных самолетах над водой этот вопрос можно попытаться решить...» [10]
К 1960-м годам технология начала развиваться, во многом благодаря независимому вкладу Ростислава Алексеева в Советском Союзе [11] и немца Александра Липпиша , работавшего в Соединенных Штатах . Алексеев работал, имея за плечами опыт работы конструктором кораблей, тогда как Липпиш работал авиационным инженером. Влияние Алексеева и Липпиша остается заметным в большинстве современных экранопланов.
Говорят, что исследовательский гидрокрыло HD-4 Александра Грэхема Белла имел часть своей динамической подъемной силы, созданной парой крыльев, работающих в условиях экранного эффекта [12] . Однако сомнительно, знал ли конструктор о его существовании из-за относительной незрелости аэродинамики .
Avro Canada исследовала самолеты с системой силовой установки на основе эффекта Коанда . Такие реактивные самолеты должны были создавать воздушную подушку под планером, которая позволит им зависать на земле. Фактически, из всех построенных испытательных самолетов это был единственный режим, в котором они могли работать из-за проблем с устойчивостью при взлете. Позднее эти проекты были доработаны Соединенными Штатами, в то время как Convair , возможно, вдохновилась ими для создания предварительного проекта большого океанского экраноплана под названием Hydroskimmer. [13]
Под руководством Алексеева Центральное конструкторское бюро по судам на подводных крыльях ( ЦКБ СПК ) было центром разработки экранопланов в СССР. Аппарат стал известен как экраноплан ( от эффекта экрана , буквально screen effect , или ground effect на английском языке ) . Военный потенциал такого аппарата вскоре был признан , и Алексеев получил поддержку и финансовые ресурсы от советского лидера Никиты Хрущева .
Были построены некоторые пилотируемые и беспилотные прототипы, водоизмещением до восьми тонн . Это привело к разработке 550-тонного военного экраноплана длиной 92 м (302 фута). Судно было названо экспертами американской разведки «Каспийским монстром» после того, как в 1960-х годах на фотографиях разведки со спутников в районе Каспийского моря было замечено огромное неизвестное судно. Благодаря коротким крыльям оно выглядело в плане как самолет, но, вероятно, было бы неспособно летать. [14] Хотя оно было спроектировано для полета на высоте не более 3 м (10 футов) над морем, было обнаружено, что оно наиболее эффективно на высоте 20 м (66 футов), достигая максимальной скорости 300–400 узлов (560–740 км/ч) в исследовательских полетах.
Советская программа экранопланов продолжилась при поддержке министра обороны Дмитрия Устинова . Она создала самый успешный экраноплан на сегодняшний день, 125-тонный А-90 «Орленок» . Эти суда изначально разрабатывались как скоростные военные транспорты и обычно базировались на берегах Каспийского и Черного морей . Советский флот заказал 120 экранопланов класса «Орленок» , но позже эта цифра была сокращена до менее чем 30 судов, с запланированным развертыванием в основном на Черноморском и Балтийском флотах.
Несколько «Орленков» служили в ВМФ СССР с 1979 по 1992 год. В 1987 году был построен 400-тонный экраноплан класса «Лунь» в качестве стартовой платформы для противокорабельных ракет. Второй «Лунь» , переименованный в «Спасатель» , был заложен как спасательное судно, но так и не был достроен. Двумя основными проблемами, с которыми столкнулись советские экранопланы , были плохая продольная устойчивость и необходимость надежной навигации.
Министр Устинов умер в 1984 году, а новый министр обороны маршал Соколов отменил финансирование программы. На военно-морской базе под Каспийском остались только три действующих экраноплана класса «Орленок» (с измененной конструкцией корпуса) и один экраноплан класса «Лунь» .
После распада Советского Союза экранопланы производились на Волжском судостроительном заводе [15] в Нижнем Новгороде . Разрабатываются экранопланы меньшего размера для невоенного использования. В 1985 году ЦКБ уже разработало восьмиместный «Волга-2», а «Технологии и транспорт» разрабатывают его меньшую версию под названием «Амфистар». Бериев предложил большой корабль такого типа, Бе-2500, в качестве «летающего корабля»-грузовика [16] , но из проекта ничего не вышло.
В 1950-х годах ВМС США исследовали противолодочные суда, работающие на эффекте тарана, продукте эффекта земли. Такие суда должны были использовать это для создания воздушной подушки под корпусами, которая позволит зависать. Если это невозможно, должны были использоваться дополнительные двигатели для искусственного нагнетания воздуха под судно. Проект получил обозначение RAM-2. Несколько других проектов были предложены в начале холодной войны , некоторые использовали похожую комбинацию крыльев и подъемных двигателей, в то время как другие больше похожи на российские типы. Более десяти лет спустя General Dynamics спроектировала катамараны, оснащенные эффектом земли, и подала на них патенты. [17]
В Германии Липпишу было поручено построить очень быструю лодку для американского бизнесмена Артура А. Коллинза . В 1963 году Липпиш разработал X-112 , революционную конструкцию с обратным треугольным крылом и Т-образным хвостом. Эта конструкция оказалась устойчивой и эффективной в условиях влияния земли, и хотя она была успешно испытана, Коллинз решил остановить проект и продал патенты немецкой компании Rhein Flugzeugbau (RFB), которая в дальнейшем развила концепцию обратной дельты в X-113 и шестиместный X-114 . Эти суда могли летать вне влияния земли, так что, например, можно было пролетать над полуостровами. [18]
Ханно Фишер взял на себя работы RFB и создал собственную компанию Fischer Flugmechanik, которая в конечном итоге завершила две модели. Airfisch 3 перевозил двух человек, а FS-8 — шесть человек. FS-8 должен был быть разработан Fischer Flugmechanik для совместного сингапурско-австралийского предприятия Flightship. Оснащенный автомобильным двигателем V8 Chevrolet мощностью 337 кВт, прототип совершил свой первый полет в феврале 2001 года в Нидерландах. [19] Компания больше не существует, но прототип был куплен Wigetworks, [20] компанией, базирующейся в Сингапуре, и переименован в AirFish 8. В 2010 году это транспортное средство было зарегистрировано как судно в Сингапурском реестре судов. [21]
Университет Дуйсбург-Эссен поддерживает текущий исследовательский проект по разработке Hoverwing . [22]
Немецкий инженер Гюнтер Йорг, работавший над первыми проектами Алексеева и знакомый с трудностями проектирования экранопланов, разработал экраноплан с двумя крыльями в тандемном расположении, Jörg-II. Это была третья, пилотируемая, тандемная аэродинамическая лодка, названная «Skimmerfoil», которая была разработана во время его консультационного периода в Южной Африке. Это была простая и недорогая конструкция первой 4-местной тандемной аэродинамической лодки, полностью изготовленной из алюминия. Прототип находился в музее SAAF Port Elizabeth с 4 июля 2007 года по 2013 год, а сейчас находится в частном пользовании. На фотографиях музея показана лодка после нескольких лет вне музея и без защиты от солнца. [23]
Консалтинговая компания Гюнтера Йорга, специалиста и инсайдера немецкой авиационной промышленности с 1963 года и коллеги Александра Липпиша и Ханно Фишера, была основана на фундаментальных знаниях физики экранного эффекта крыла, а также на результатах фундаментальных испытаний в различных условиях и конструкциях, начатых в 1960 году. За более чем 30 лет Йорг построил и испытал 15 различных тандемных аэродинамических крыльевых крыльев разных размеров и из разных материалов.
После почти 10 лет исследований и разработок были построены следующие типы тандемных аэродинамических лодок (TAF):
Более крупные концепции: 25-местные, 32-местные, 60-местные, 80-местные и больше, вплоть до размера пассажирского самолета.
Начиная с 1980-х годов GEVs были в основном небольшими судами, предназначенными для рынков отдыха и гражданских паромов. Германия , Россия и США обеспечили большую часть активности с некоторыми разработками в Австралии , Китае , Японии , Корее и Тайване . В этих странах и регионах были построены небольшие суда с количеством мест до десяти. Другие более крупные проекты, такие как паромы и тяжелые транспорты, были предложены, но не были доведены до конца.
Помимо разработки соответствующей конструкции и структурной конфигурации, были разработаны системы автоматического управления и навигации. Они включают в себя высотомеры с высокой точностью для полетов на малых высотах и меньшей зависимостью от погодных условий. «Фазовые радиовысотомеры » стали выбором для таких приложений, обойдя лазерные высотомеры , изотропные или ультразвуковые высотомеры . [24]
При консультации с Россией Агентство перспективных исследовательских проектов Министерства обороны США (DARPA) изучило крылатый корабль Aerocon Dash 1.6 . [25] [26]
Компания Universal Hovercraft разработала летающее судно на воздушной подушке, первый прототип которого поднялся в воздух в 1996 году. [27] С 1999 года компания предлагает чертежи, детали, комплекты и производит экранопланы на воздушной подушке под названием Hoverwing. [28]
Иран развернул три эскадрильи двухместных GEV Bavar 2 в сентябре 2010 года. Этот GEV несет один пулемет и оборудование для наблюдения, а также включает в себя функции для снижения его радиолокационной заметности. [29] В октябре 2014 года спутниковые снимки показали GEV на верфи на юге Ирана. GEV имеет два двигателя и не имеет вооружения. [30]
В Сингапуре Wigetworks получила сертификат Lloyd's Register для входа в класс. [1] 31 марта 2011 года AirFish 8-001 стал одним из первых GEV, зарегистрированных в Сингапурском реестре судов, одном из крупнейших судовых реестров. [31] Wigetworks сотрудничала с инженерным факультетом Национального университета Сингапура для разработки GEV большей вместимости. [32]
Берт Рутан в 2011 году [33] и Королев в 2015 году показали проекты GEV. [34]
В Корее корпорация Wing Ship Technology Corporation разработала и испытала 50-местный пассажирский экраноплан под названием WSH-500 в 2013 году [35]
Эстонская транспортная компания Sea Wolf Express планировала запустить пассажирское сообщение в 2019 году между Хельсинки и Таллином , расстояние в 87 км, которое можно преодолеть всего за полчаса, используя экраноплан российского производства. [36] Компания заказала 15 экранопланов с максимальной скоростью 185 км/ч и вместимостью 12 пассажиров, построенных российской компанией RDC Aqualines. [37]
В 2021 году Brittany Ferries объявили, что они рассматривают возможность использования экранопланов REGENT (Regional Electric Ground Effect Naval Transport) « сипланов » [2] для перевозок через Ла-Манш . [38] Southern Airways Express также разместила твердые заказы на сипланы с намерением эксплуатировать их вдоль восточного побережья Флориды. [39] [40]
Примерно в середине 2022 года Агентство перспективных исследовательских проектов Министерства обороны США (DARPA) запустило проект Liberty Lifter с целью создания недорогого гидросамолета, который будет использовать эффект земли для увеличения дальности полета. Программа направлена на перевозку 90 тонн на расстояние более 6500 морских миль (12 000 км), работу в море без наземного обслуживания, и все это с использованием недорогих материалов. [41] [42] [43]
В мае 2024 года Ocean Glider объявила о сделке с британским инвестором MONTE на финансирование 145 млн долларов из 700 млн долларов сделки по началу эксплуатации 25 морских глайдеров REGENT между пунктами назначения в Новой Зеландии. [44] Заказ включает 15 12-местных Viceroy и 10 100-местных Monarch. [45]
{{cite book}}
: CS1 maint: отсутствует местоположение издателя ( ссылка ){{cite tech report}}
: CS1 maint: DOI неактивен по состоянию на ноябрь 2024 г. ( ссылка )