Линейная форма

Линейное отображение из векторного пространства в его поле скаляров

В математике линейная форма ( также известная как линейный функционал , [1] однократная форма или ковектор ) — это линейное отображение [nb 1] векторного пространства в его поле скаляров (часто действительных чисел или комплексных чисел ).

Если V — векторное пространство над полем k , множество всех линейных функционалов от V до k само является векторным пространством над k со сложением и скалярным умножением, определенными поточечно . Это пространство называется двойственным пространством V или иногда алгебраическим двойственным пространством , когда также рассматривается топологическое двойственное пространство . Его часто обозначают Hom( V , k ) , [2] или, когда подразумевается поле k , ; [3] также используются другие обозначения, такие как , [4] [5] или [2] Когда векторы представлены векторами-столбцами (что обычно бывает, когда базис фиксирован), то линейные функционалы представлены как векторы-строки , а их значения на конкретных векторах задаются матричными произведениями (с вектором-стркой слева). В {\displaystyle V^{*}} В {\displaystyle V'} V # {\displaystyle V^{\#}} V . {\displaystyle V^{\vee }.}

Примеры

Функция постоянного нуля , отображающая каждый вектор в ноль, является тривиально линейным функционалом. Любой другой линейный функционал (такой как ниже) является сюръективным (то есть его областью значений являются все k ).

  • Индексация в вектор: Второй элемент трехвектора задается единичной формой. То есть, второй элемент равен [ 0 , 1 , 0 ] . {\displaystyle [0,1,0].} [ x , y , z ] {\displaystyle [x,y,z]} [ 0 , 1 , 0 ] [ x , y , z ] = y . {\displaystyle [0,1,0]\cdot [x,y,z]=y.}
  • Среднее : Средний элемент -вектора задается одной формой. То есть, n {\displaystyle n} [ 1 / n , 1 / n , , 1 / n ] . {\displaystyle \left[1/n,1/n,\ldots ,1/n\right].} mean ( v ) = [ 1 / n , 1 / n , , 1 / n ] v . {\displaystyle \operatorname {mean} (v)=\left[1/n,1/n,\ldots ,1/n\right]\cdot v.}
  • Выборка : Выборку с ядром можно считать одноформной, где одноформной является ядро, смещенное в соответствующее место.
  • Чистая текущая стоимость чистого денежного потока , задается одной формой, где - ставка дисконтирования . То есть, R ( t ) , {\displaystyle R(t),} w ( t ) = ( 1 + i ) t {\displaystyle w(t)=(1+i)^{-t}} i {\displaystyle i} N P V ( R ( t ) ) = w , R = t = 0 R ( t ) ( 1 + i ) t d t . {\displaystyle \mathrm {NPV} (R(t))=\langle w,R\rangle =\int _{t=0}^{\infty }{\frac {R(t)}{(1+i)^{t}}}\,dt.}

Линейные функционалы в Rн

Предположим, что векторы в реальном координатном пространстве представлены в виде векторов-столбцов R n {\displaystyle \mathbb {R} ^{n}} x = [ x 1 x n ] . {\displaystyle \mathbf {x} ={\begin{bmatrix}x_{1}\\\vdots \\x_{n}\end{bmatrix}}.}

Для каждого вектора-строки существует линейный функционал, определяемый формулой , и каждый линейный функционал может быть выражен в этой форме. a = [ a 1 a n ] {\displaystyle \mathbf {a} ={\begin{bmatrix}a_{1}&\cdots &a_{n}\end{bmatrix}}} f a {\displaystyle f_{\mathbf {a} }} f a ( x ) = a 1 x 1 + + a n x n , {\displaystyle f_{\mathbf {a} }(\mathbf {x} )=a_{1}x_{1}+\cdots +a_{n}x_{n},}

Это можно интерпретировать либо как матричное произведение, либо как скалярное произведение вектора-строки и вектора-столбца : a {\displaystyle \mathbf {a} } x {\displaystyle \mathbf {x} } f a ( x ) = a x = [ a 1 a n ] [ x 1 x n ] . {\displaystyle f_{\mathbf {a} }(\mathbf {x} )=\mathbf {a} \cdot \mathbf {x} ={\begin{bmatrix}a_{1}&\cdots &a_{n}\end{bmatrix}}{\begin{bmatrix}x_{1}\\\vdots \\x_{n}\end{bmatrix}}.}

След квадратной матрицы

След квадратной матрицы — это сумма всех элементов на ее главной диагонали . Матрицы можно умножать на скаляры, а две матрицы одинаковой размерности можно складывать; эти операции создают векторное пространство из множества всех матриц. След — это линейный функционал на этом пространстве, потому что и для всех скаляров и всех матриц tr ( A ) {\displaystyle \operatorname {tr} (A)} A {\displaystyle A} n × n {\displaystyle n\times n} tr ( s A ) = s tr ( A ) {\displaystyle \operatorname {tr} (sA)=s\operatorname {tr} (A)} tr ( A + B ) = tr ( A ) + tr ( B ) {\displaystyle \operatorname {tr} (A+B)=\operatorname {tr} (A)+\operatorname {tr} (B)} s {\displaystyle s} n × n {\displaystyle n\times n} A  and  B . {\displaystyle A{\text{ and }}B.}

(Определенная) Интеграция

Линейные функционалы впервые появились в функциональном анализе , изучении векторных пространств функций . Типичным примером линейного функционала является интегрирование : линейное преобразование, определяемое интегралом Римана, является линейным функционалом из векторного пространства непрерывных функций на интервале в действительные числа. Линейность следует из стандартных фактов об интеграле: I ( f ) = a b f ( x ) d x {\displaystyle I(f)=\int _{a}^{b}f(x)\,dx} C [ a , b ] {\displaystyle C[a,b]} [ a , b ] {\displaystyle [a,b]} I {\displaystyle I} I ( f + g ) = a b [ f ( x ) + g ( x ) ] d x = a b f ( x ) d x + a b g ( x ) d x = I ( f ) + I ( g ) I ( α f ) = a b α f ( x ) d x = α a b f ( x ) d x = α I ( f ) . {\displaystyle {\begin{aligned}I(f+g)&=\int _{a}^{b}[f(x)+g(x)]\,dx=\int _{a}^{b}f(x)\,dx+\int _{a}^{b}g(x)\,dx=I(f)+I(g)\\I(\alpha f)&=\int _{a}^{b}\alpha f(x)\,dx=\alpha \int _{a}^{b}f(x)\,dx=\alpha I(f).\end{aligned}}}

Оценка

Пусть обозначает векторное пространство действительных полиномиальных функций степени , определенной на интервале Если то пусть будет оценочным функционалом Отображение линейно, поскольку P n {\displaystyle P_{n}} n {\displaystyle \leq n} [ a , b ] . {\displaystyle [a,b].} c [ a , b ] , {\displaystyle c\in [a,b],} ev c : P n R {\displaystyle \operatorname {ev} _{c}:P_{n}\to \mathbb {R} } ev c f = f ( c ) . {\displaystyle \operatorname {ev} _{c}f=f(c).} f f ( c ) {\displaystyle f\mapsto f(c)} ( f + g ) ( c ) = f ( c ) + g ( c ) ( α f ) ( c ) = α f ( c ) . {\displaystyle {\begin{aligned}(f+g)(c)&=f(c)+g(c)\\(\alpha f)(c)&=\alpha f(c).\end{aligned}}}

Если являются различными точками в , то оценочные функционалы образуют основу двойственного пространства (Лакс (1996) доказывает этот последний факт, используя интерполяцию Лагранжа ). x 0 , , x n {\displaystyle x_{0},\ldots ,x_{n}} n + 1 {\displaystyle n+1} [ a , b ] , {\displaystyle [a,b],} ev x i , {\displaystyle \operatorname {ev} _{x_{i}},} i = 0 , , n {\displaystyle i=0,\ldots ,n} P n {\displaystyle P_{n}}

Непример

Функция, имеющая уравнение прямой с (например, ), не является линейным функционалом на , поскольку она не является линейной . [nb 2] Однако она является аффинно-линейной . f {\displaystyle f} f ( x ) = a + r x {\displaystyle f(x)=a+rx} a 0 {\displaystyle a\neq 0} f ( x ) = 1 + 2 x {\displaystyle f(x)=1+2x} R {\displaystyle \mathbb {R} }

Визуализация

Геометрическая интерпретация 1-формы α как стопки гиперплоскостей постоянного значения, каждая из которых соответствует тем векторам, которые α отображает в заданное скалярное значение, показанное рядом с ним вместе с «смыслом» увеличения. Нулевая плоскость проходит через начало координат.

В конечных измерениях линейный функционал можно визуализировать в терминах его множеств уровня , множеств векторов, которые отображаются в заданное значение. В трех измерениях множества уровня линейного функционала представляют собой семейство взаимно параллельных плоскостей; в более высоких измерениях они являются параллельными гиперплоскостями . Этот метод визуализации линейных функционалов иногда вводится в текстах по общей теории относительности , таких как «Гравитация» Мизнера, Торна и Уиллера (1973).

Приложения

Применение к квадратуре

Если — различные точки в [ a , b ] , то линейные функционалы, определенные выше, образуют базис двойственного пространства P n , пространства полиномов степени Интегральный функционал I также является линейным функционалом на P n , и поэтому может быть выражен как линейная комбинация этих базисных элементов. В символах есть коэффициенты для которых для всех Это составляет основу теории числовых квадратур . [6] x 0 , , x n {\displaystyle x_{0},\ldots ,x_{n}} n + 1 {\displaystyle n+1} ev x i : f f ( x i ) {\displaystyle \operatorname {ev} _{x_{i}}:f\mapsto f\left(x_{i}\right)} n . {\displaystyle \leq n.} a 0 , , a n {\displaystyle a_{0},\ldots ,a_{n}} I ( f ) = a 0 f ( x 0 ) + a 1 f ( x 1 ) + + a n f ( x n ) {\displaystyle I(f)=a_{0}f(x_{0})+a_{1}f(x_{1})+\dots +a_{n}f(x_{n})} f P n . {\displaystyle f\in P_{n}.}

В квантовой механике

Линейные функционалы особенно важны в квантовой механике . Квантово-механические системы представлены гильбертовыми пространствами , которые антиизоморфны своим собственным дуальным пространствам. Состояние квантово-механической системы можно определить с помощью линейного функционала. Для получения дополнительной информации см . обозначение скобок .

Распределения

В теории обобщенных функций некоторые виды обобщенных функций, называемые распределениями, могут быть реализованы как линейные функционалы на пространствах тестовых функций .

Двойственные векторы и билинейные формы

Линейные функционалы (1-формы) α , β и их сумма σ и векторы u , v , w , в 3d евклидовом пространстве . Количество (1-форм) гиперплоскостей , пересекаемых вектором, равно внутреннему произведению . [7]

Каждая невырожденная билинейная форма на конечномерном векторном пространстве V индуцирует изоморфизм VV  : vv такой, что v ( w ) := v , w w V , {\displaystyle v^{*}(w):=\langle v,w\rangle \quad \forall w\in V,}

где билинейная форма на V обозначается (например, в евклидовом пространстве — скалярное произведение v и w ). , {\displaystyle \langle \,\cdot \,,\,\cdot \,\rangle } v , w = v w {\displaystyle \langle v,w\rangle =v\cdot w}

Обратный изоморфизм — V V  : v v , где v — единственный элемент V такой, что для всех v , w = v ( w ) {\displaystyle \langle v,w\rangle =v^{*}(w)} w V . {\displaystyle w\in V.}

Определенный выше вектор v V называется двойственным вектором v V . {\displaystyle v\in V.}

В бесконечномерном гильбертовом пространстве аналогичные результаты справедливы по теореме Рисса о представлении . Существует отображение VV из V в его непрерывное сопряженное пространство V .

Отношение к базам

Основа двойственного пространства

Пусть векторное пространство V имеет базис , не обязательно ортогональный . Тогда двойственное пространство имеет базис, называемый двойственным базисом, определяемый специальным свойством, что e 1 , e 2 , , e n {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\dots ,\mathbf {e} _{n}} V {\displaystyle V^{*}} ω ~ 1 , ω ~ 2 , , ω ~ n {\displaystyle {\tilde {\omega }}^{1},{\tilde {\omega }}^{2},\dots ,{\tilde {\omega }}^{n}} ω ~ i ( e j ) = { 1 if   i = j 0 if   i j . {\displaystyle {\tilde {\omega }}^{i}(\mathbf {e} _{j})={\begin{cases}1&{\text{if}}\ i=j\\0&{\text{if}}\ i\neq j.\end{cases}}}

Или, более кратко, ω ~ i ( e j ) = δ i j {\displaystyle {\tilde {\omega }}^{i}(\mathbf {e} _{j})=\delta _{ij}}

где — дельта Кронекера . Здесь верхние индексы базисных функционалов — это не показатели степени, а контравариантные индексы. δ i j {\displaystyle \delta _{ij}}

Линейный функционал, принадлежащий двойственному пространству, может быть выражен как линейная комбинация базисных функционалов с коэффициентами («компонентами») u i , u ~ {\displaystyle {\tilde {u}}} V ~ {\displaystyle {\tilde {V}}} u ~ = i = 1 n u i ω ~ i . {\displaystyle {\tilde {u}}=\sum _{i=1}^{n}u_{i}\,{\tilde {\omega }}^{i}.}

Тогда, применяя функционал к базисному вектору, получаем u ~ {\displaystyle {\tilde {u}}} e j {\displaystyle \mathbf {e} _{j}} u ~ ( e j ) = i = 1 n ( u i ω ~ i ) e j = i u i [ ω ~ i ( e j ) ] {\displaystyle {\tilde {u}}(\mathbf {e} _{j})=\sum _{i=1}^{n}\left(u_{i}\,{\tilde {\omega }}^{i}\right)\mathbf {e} _{j}=\sum _{i}u_{i}\left[{\tilde {\omega }}^{i}\left(\mathbf {e} _{j}\right)\right]}

из-за линейности скалярных множителей функционалов и поточечной линейности сумм функционалов. Тогда u ~ ( e j ) = i u i [ ω ~ i ( e j ) ] = i u i δ i j = u j . {\displaystyle {\begin{aligned}{\tilde {u}}({\mathbf {e} }_{j})&=\sum _{i}u_{i}\left[{\tilde {\omega }}^{i}\left({\mathbf {e} }_{j}\right)\right]\\&=\sum _{i}u_{i}{\delta }_{ij}\\&=u_{j}.\end{aligned}}}

Таким образом, каждый компонент линейного функционала можно извлечь, применив функционал к соответствующему базисному вектору.

Двойственный базис и внутренний продукт

Когда пространство V несет скалярное произведение , то можно явно записать формулу для двойственного базиса данного базиса. Пусть V имеет (не обязательно ортогональный) базис В трех измерениях ( n = 3 ) двойственный базис можно записать явно для где εсимвол Леви-Чивиты , а скалярное произведение (или скалярное произведение ) на V. e 1 , , e n . {\displaystyle \mathbf {e} _{1},\dots ,\mathbf {e} _{n}.} ω ~ i ( v ) = 1 2 j = 1 3 k = 1 3 ε i j k ( e j × e k ) e 1 e 2 × e 3 , v , {\displaystyle {\tilde {\omega }}^{i}(\mathbf {v} )={\frac {1}{2}}\left\langle {\frac {\sum _{j=1}^{3}\sum _{k=1}^{3}\varepsilon ^{ijk}\,(\mathbf {e} _{j}\times \mathbf {e} _{k})}{\mathbf {e} _{1}\cdot \mathbf {e} _{2}\times \mathbf {e} _{3}}},\mathbf {v} \right\rangle ,} i = 1 , 2 , 3 , {\displaystyle i=1,2,3,} , {\displaystyle \langle \cdot ,\cdot \rangle }

В более высоких измерениях это обобщается следующим образом: где — оператор звезды Ходжа . ω ~ i ( v ) = 1 i 2 < i 3 < < i n n ε i i 2 i n ( e i 2 e i n ) ( e 1 e n ) , v , {\displaystyle {\tilde {\omega }}^{i}(\mathbf {v} )=\left\langle {\frac {\sum _{1\leq i_{2}<i_{3}<\dots <i_{n}\leq n}\varepsilon ^{ii_{2}\dots i_{n}}(\star \mathbf {e} _{i_{2}}\wedge \cdots \wedge \mathbf {e} _{i_{n}})}{\star (\mathbf {e} _{1}\wedge \cdots \wedge \mathbf {e} _{n})}},\mathbf {v} \right\rangle ,} {\displaystyle \star }

По рингу

Модули над кольцом являются обобщениями векторных пространств, что снимает ограничение, что коэффициенты принадлежат полю . Если задан модуль M над кольцом R , линейная форма на M является линейным отображением из M в R , где последний рассматривается как модуль над собой. Пространство линейных форм всегда обозначается Hom k ( V , k ) , независимо от того, является ли k полем или нет. Это правый модуль , если V является левым модулем.

Существование «достаточного количества» линейных форм на модуле эквивалентно проективности . [8]

Лемма о дуальном базисе  —  R - модуль M проективен тогда и только тогда , когда существует подмножество и линейные формы такие, что для каждого только конечное число ненулевые, и A M {\displaystyle A\subset M} { f a a A } {\displaystyle \{f_{a}\mid a\in A\}} x M , {\displaystyle x\in M,} f a ( x ) {\displaystyle f_{a}(x)} x = a A f a ( x ) a {\displaystyle x=\sum _{a\in A}{f_{a}(x)a}}

Изменение поля

Предположим, что — векторное пространство над Ограничение скалярного умножения до приводит к действительному векторному пространству [9], называемому реализацией Любое векторное пространство над также является векторным пространством над , наделенным сложной структурой ; то есть существует действительное векторное подпространство такое, что мы можем (формально) записать как -векторные пространства. X {\displaystyle X} C . {\displaystyle \mathbb {C} .} R {\displaystyle \mathbb {R} } X R {\displaystyle X_{\mathbb {R} }} X . {\displaystyle X.} X {\displaystyle X} C {\displaystyle \mathbb {C} } R , {\displaystyle \mathbb {R} ,} X R {\displaystyle X_{\mathbb {R} }} X = X R X R i {\displaystyle X=X_{\mathbb {R} }\oplus X_{\mathbb {R} }i} R {\displaystyle \mathbb {R} }

Действительные и комплексные линейные функционалы

Каждый линейный функционал на является комплекснозначным, в то время как каждый линейный функционал на является вещественнозначным. Если то линейный функционал на одном из или нетривиален (то есть не тождественен ) тогда и только тогда, когда он сюръективен (потому что если то для любого скаляра ), где образ линейного функционала на есть в то время как образ линейного функционала на есть Следовательно, единственная функция на , которая является как линейным функционалом на , так и линейной функцией на есть тривиальный функционал; другими словами, где обозначает алгебраическое сопряженное пространство пространства . Однако каждый -линейный функционал на является -линейным оператором (то есть он аддитивен и однороден по ), но если он не тождественен, то он не является -линейным функционалом на , потому что его область значений (которая равна ) двумерна по Наоборот, ненулевой -линейный функционал имеет область значений слишком малую, чтобы быть -линейным функционалом. X {\displaystyle X} X R {\displaystyle X_{\mathbb {R} }} dim X 0 {\displaystyle \dim X\neq 0} X {\displaystyle X} X R {\displaystyle X_{\mathbb {R} }} 0 {\displaystyle 0} φ ( x ) 0 {\displaystyle \varphi (x)\neq 0} s , {\displaystyle s,} φ ( ( s / φ ( x ) ) x ) = s {\displaystyle \varphi \left((s/\varphi (x))x\right)=s} X {\displaystyle X} C {\displaystyle \mathbb {C} } X R {\displaystyle X_{\mathbb {R} }} R . {\displaystyle \mathbb {R} .} X {\displaystyle X} X {\displaystyle X} X R {\displaystyle X_{\mathbb {R} }} X # X R # = { 0 } , {\displaystyle X^{\#}\cap X_{\mathbb {R} }^{\#}=\{0\},} # {\displaystyle \,{\cdot }^{\#}} C {\displaystyle \mathbb {C} } X {\displaystyle X} R {\displaystyle \mathbb {R} } R {\displaystyle \mathbb {R} } 0 , {\displaystyle 0,} R {\displaystyle \mathbb {R} } X {\displaystyle X} C {\displaystyle \mathbb {C} } R . {\displaystyle \mathbb {R} .} R {\displaystyle \mathbb {R} } C {\displaystyle \mathbb {C} }

Действительная и мнимая части

Если то обозначим его действительную часть через , а мнимую часть через Тогда и являются линейными функционалами от и Из того, что для всех следует, что для всех [9] и, следовательно, что и [10] φ X # {\displaystyle \varphi \in X^{\#}} φ R := Re φ {\displaystyle \varphi _{\mathbb {R} }:=\operatorname {Re} \varphi } φ i := Im φ . {\displaystyle \varphi _{i}:=\operatorname {Im} \varphi .} φ R : X R {\displaystyle \varphi _{\mathbb {R} }:X\to \mathbb {R} } φ i : X R {\displaystyle \varphi _{i}:X\to \mathbb {R} } X R {\displaystyle X_{\mathbb {R} }} φ = φ R + i φ i . {\displaystyle \varphi =\varphi _{\mathbb {R} }+i\varphi _{i}.} z = Re z i Re ( i z ) = Im ( i z ) + i Im z {\displaystyle z=\operatorname {Re} z-i\operatorname {Re} (iz)=\operatorname {Im} (iz)+i\operatorname {Im} z} z C {\displaystyle z\in \mathbb {C} } x X , {\displaystyle x\in X,} φ ( x ) = φ R ( x ) i φ R ( i x ) = φ i ( i x ) + i φ i ( x ) {\displaystyle {\begin{alignedat}{4}\varphi (x)&=\varphi _{\mathbb {R} }(x)-i\varphi _{\mathbb {R} }(ix)\\&=\varphi _{i}(ix)+i\varphi _{i}(x)\\\end{alignedat}}} φ i ( x ) = φ R ( i x ) {\displaystyle \varphi _{i}(x)=-\varphi _{\mathbb {R} }(ix)} φ R ( x ) = φ i ( i x ) . {\displaystyle \varphi _{\mathbb {R} }(x)=\varphi _{i}(ix).}

Присваивание определяет биективный [10] -линейный оператор , обратным которому является отображение, определенное присваиванием , которое отправляет в линейный функционал, определенный как Действительная часть равна и биекция является -линейным оператором, что означает, что и для всех и [10] Аналогично для мнимой части, присваивание индуцирует -линейную биекцию , обратным которой является отображение , определенное отправкой в ​​линейный функционал на , определенный как φ φ R {\displaystyle \varphi \mapsto \varphi _{\mathbb {R} }} R {\displaystyle \mathbb {R} } X # X R # {\displaystyle X^{\#}\to X_{\mathbb {R} }^{\#}} L : X R # X # {\displaystyle L_{\bullet }:X_{\mathbb {R} }^{\#}\to X^{\#}} g L g {\displaystyle g\mapsto L_{g}} g : X R R {\displaystyle g:X_{\mathbb {R} }\to \mathbb {R} } L g : X C {\displaystyle L_{g}:X\to \mathbb {C} } L g ( x ) := g ( x ) i g ( i x )  for all  x X . {\displaystyle L_{g}(x):=g(x)-ig(ix)\quad {\text{ for all }}x\in X.} L g {\displaystyle L_{g}} g {\displaystyle g} L : X R # X # {\displaystyle L_{\bullet }:X_{\mathbb {R} }^{\#}\to X^{\#}} R {\displaystyle \mathbb {R} } L g + h = L g + L h {\displaystyle L_{g+h}=L_{g}+L_{h}} L r g = r L g {\displaystyle L_{rg}=rL_{g}} r R {\displaystyle r\in \mathbb {R} } g , h X R # . {\displaystyle g,h\in X_{\mathbb {R} }^{\#}.} φ φ i {\displaystyle \varphi \mapsto \varphi _{i}} R {\displaystyle \mathbb {R} } X # X R # {\displaystyle X^{\#}\to X_{\mathbb {R} }^{\#}} X R # X # {\displaystyle X_{\mathbb {R} }^{\#}\to X^{\#}} I X R # {\displaystyle I\in X_{\mathbb {R} }^{\#}} X {\displaystyle X} x I ( i x ) + i I ( x ) . {\displaystyle x\mapsto I(ix)+iI(x).}

Это соотношение было открыто Генри Лёвигом в 1934 году (хотя обычно его приписывают Ф. Мюррею), [11] и может быть обобщено на произвольные конечные расширения поля естественным образом. Оно имеет много важных следствий, некоторые из которых будут сейчас описаны.

Свойства и отношения

Предположим, что есть линейный функционал с действительной частью и мнимой частью φ : X C {\displaystyle \varphi :X\to \mathbb {C} } X {\displaystyle X} φ R := Re φ {\displaystyle \varphi _{\mathbb {R} }:=\operatorname {Re} \varphi } φ i := Im φ . {\displaystyle \varphi _{i}:=\operatorname {Im} \varphi .}

Тогда если и только если тогда и только если φ = 0 {\displaystyle \varphi =0} φ R = 0 {\displaystyle \varphi _{\mathbb {R} }=0} φ i = 0. {\displaystyle \varphi _{i}=0.}

Предположим, что является топологическим векторным пространством . Тогда является непрерывным тогда и только тогда, когда его действительная часть непрерывна, тогда и только тогда, когда мнимая часть непрерывна. То есть, либо все три из и непрерывны, либо ни один из них не является непрерывным. Это остается верным, если слово «непрерывный» заменить на слово « ограниченный ». В частности, тогда и только тогда, когда где штрих обозначает непрерывное двойственное пространство пространства . [9] X {\displaystyle X} φ {\displaystyle \varphi } φ R {\displaystyle \varphi _{\mathbb {R} }} φ {\displaystyle \varphi } φ i {\displaystyle \varphi _{i}} φ , φ R , {\displaystyle \varphi ,\varphi _{\mathbb {R} },} φ i {\displaystyle \varphi _{i}} φ X {\displaystyle \varphi \in X^{\prime }} φ R X R {\displaystyle \varphi _{\mathbb {R} }\in X_{\mathbb {R} }^{\prime }}

Пусть Если для всех скаляров единичной длины (имеется в виду ), то [доказательство 1] [12] Аналогично, если обозначает комплексную часть , то подразумевает Если является нормированным пространством с нормой , а если является замкнутым единичным шаром, то супремумы выше являются нормами операторов (определенными обычным образом) и так что [12] Этот вывод распространяется на аналогичное утверждение для поляр сбалансированных множеств в общих топологических векторных пространствах . B X . {\displaystyle B\subseteq X.} u B B {\displaystyle uB\subseteq B} u C {\displaystyle u\in \mathbb {C} } | u | = 1 {\displaystyle |u|=1} sup b B | φ ( b ) | = sup b B | φ R ( b ) | . {\displaystyle \sup _{b\in B}|\varphi (b)|=\sup _{b\in B}\left|\varphi _{\mathbb {R} }(b)\right|.} φ i := Im φ : X R {\displaystyle \varphi _{i}:=\operatorname {Im} \varphi :X\to \mathbb {R} } φ {\displaystyle \varphi } i B B {\displaystyle iB\subseteq B} sup b B | φ R ( b ) | = sup b B | φ i ( b ) | . {\displaystyle \sup _{b\in B}\left|\varphi _{\mathbb {R} }(b)\right|=\sup _{b\in B}\left|\varphi _{i}(b)\right|.} X {\displaystyle X} {\displaystyle \|\cdot \|} B = { x X : x 1 } {\displaystyle B=\{x\in X:\|x\|\leq 1\}} φ , φ R , {\displaystyle \varphi ,\varphi _{\mathbb {R} },} φ i {\displaystyle \varphi _{i}} φ = φ R = φ i . {\displaystyle \|\varphi \|=\left\|\varphi _{\mathbb {R} }\right\|=\left\|\varphi _{i}\right\|.}

  • Если — комплексное гильбертово пространство с (комплексным) скалярным произведением , которое антилинейно по первой координате (и линейно по второй), то становится действительным гильбертовым пространством, если наделить его действительной частью Явно, это действительное скалярное произведение на определяется как для всех и оно индуцирует ту же норму на как , поскольку для всех векторов Применение теоремы Рисса о представлении к (соответственно к ) гарантирует существование единственного вектора (соответственно ) такого, что (соответственно ) для всех векторов Теорема также гарантирует, что и Легко проверить, что Теперь и предыдущие равенства подразумевают то же самое заключение, которое было сделано выше. X {\displaystyle X} | {\displaystyle \langle \,\cdot \,|\,\cdot \,\rangle } X R {\displaystyle X_{\mathbb {R} }} | . {\displaystyle \langle \,\cdot \,|\,\cdot \,\rangle .} X R {\displaystyle X_{\mathbb {R} }} x | y R := Re x | y {\displaystyle \langle x|y\rangle _{\mathbb {R} }:=\operatorname {Re} \langle x|y\rangle } x , y X {\displaystyle x,y\in X} X {\displaystyle X} | {\displaystyle \langle \,\cdot \,|\,\cdot \,\rangle } x | x R = x | x {\displaystyle {\sqrt {\langle x|x\rangle _{\mathbb {R} }}}={\sqrt {\langle x|x\rangle }}} x . {\displaystyle x.} φ X {\displaystyle \varphi \in X^{\prime }} φ R X R {\displaystyle \varphi _{\mathbb {R} }\in X_{\mathbb {R} }^{\prime }} f φ X {\displaystyle f_{\varphi }\in X} f φ R X R {\displaystyle f_{\varphi _{\mathbb {R} }}\in X_{\mathbb {R} }} φ ( x ) = f φ | x {\displaystyle \varphi (x)=\left\langle f_{\varphi }|\,x\right\rangle } φ R ( x ) = f φ R | x R {\displaystyle \varphi _{\mathbb {R} }(x)=\left\langle f_{\varphi _{\mathbb {R} }}|\,x\right\rangle _{\mathbb {R} }} x . {\displaystyle x.} f φ = φ X {\displaystyle \left\|f_{\varphi }\right\|=\|\varphi \|_{X^{\prime }}} f φ R = φ R X R . {\displaystyle \left\|f_{\varphi _{\mathbb {R} }}\right\|=\left\|\varphi _{\mathbb {R} }\right\|_{X_{\mathbb {R} }^{\prime }}.} f φ = f φ R . {\displaystyle f_{\varphi }=f_{\varphi _{\mathbb {R} }}.} f φ = f φ R {\displaystyle \left\|f_{\varphi }\right\|=\left\|f_{\varphi _{\mathbb {R} }}\right\|} φ X = φ R X R , {\displaystyle \|\varphi \|_{X^{\prime }}=\left\|\varphi _{\mathbb {R} }\right\|_{X_{\mathbb {R} }^{\prime }},}

В бесконечных измерениях

Ниже все векторные пространства находятся либо над действительными числами , либо над комплексными числами. R {\displaystyle \mathbb {R} } C . {\displaystyle \mathbb {C} .}

Если — топологическое векторное пространство , то пространство непрерывных линейных функционалов — непрерывное сопряженное — часто называют просто сопряженным пространством. Если — банахово пространство , то его (непрерывное) сопряженное пространство также является таковым. Чтобы отличить обычное сопряженное пространство от непрерывного сопряженного пространства, первое иногда называют алгебраическим сопряженным пространством . В конечных размерностях каждый линейный функционал непрерывен, поэтому непрерывное сопряженное пространство совпадает с алгебраическим сопряженным пространством, но в бесконечных размерностях непрерывное сопряженное пространство является собственным подпространством алгебраического сопряженного пространства. V {\displaystyle V} V {\displaystyle V}

Линейный функционал f на (не обязательно локально выпуклом ) топологическом векторном пространстве X непрерывен тогда и только тогда, когда существует непрерывная полунорма p на X такая, что [13] | f | p . {\displaystyle |f|\leq p.}

Характеристика замкнутых подпространств

Непрерывные линейные функционалы обладают полезными свойствами для анализа : линейный функционал непрерывен тогда и только тогда, когда его ядро ​​замкнуто, [14] а нетривиальный непрерывный линейный функционал является открытым отображением , даже если (топологическое) векторное пространство неполное. [15]

Гиперплоскости и максимальные подпространства

Вектор подпространства называется максимальным , если (имея в виду и ) и не существует векторного подпространства такого , что Вектор подпространства является максимальным тогда и только тогда, когда оно является ядром некоторого нетривиального линейного функционала на (то есть для некоторого линейного функционала на , который не равен тождественно 0 ). Аффинная гиперплоскость в является трансляцией максимального векторного подпространства. По линейности подмножество является аффинной гиперплоскостью тогда и только тогда, когда существует некоторый нетривиальный линейный функционал на , такой что [11] Если является линейным функционалом и является скаляром, то Это равенство можно использовать для связи различных множеств уровня Более того, если то ядро ​​может быть восстановлено из аффинной гиперплоскости с помощью M {\displaystyle M} X {\displaystyle X} M X {\displaystyle M\subsetneq X} M X {\displaystyle M\subseteq X} M X {\displaystyle M\neq X} N {\displaystyle N} X {\displaystyle X} M N X . {\displaystyle M\subsetneq N\subsetneq X.} M {\displaystyle M} X {\displaystyle X} X {\displaystyle X} M = ker f {\displaystyle M=\ker f} f {\displaystyle f} X {\displaystyle X} X {\displaystyle X} H {\displaystyle H} X {\displaystyle X} f {\displaystyle f} X {\displaystyle X} H = f 1 ( 1 ) = { x X : f ( x ) = 1 } . {\displaystyle H=f^{-1}(1)=\{x\in X:f(x)=1\}.} f {\displaystyle f} s 0 {\displaystyle s\neq 0} f 1 ( s ) = s ( f 1 ( 1 ) ) = ( 1 s f ) 1 ( 1 ) . {\displaystyle f^{-1}(s)=s\left(f^{-1}(1)\right)=\left({\frac {1}{s}}f\right)^{-1}(1).} f . {\displaystyle f.} f 0 {\displaystyle f\neq 0} f {\displaystyle f} H := f 1 ( 1 ) {\displaystyle H:=f^{-1}(1)} ker f = H H . {\displaystyle \ker f=H-H.}

Соотношения между множественными линейными функционалами

Любые два линейных функционала с одинаковым ядром пропорциональны (т.е. скалярно кратны друг другу). Этот факт можно обобщить до следующей теоремы.

Теорема [16] [17]  —  Если — линейные функционалы на X , то следующие условия эквивалентны: f , g 1 , , g n {\displaystyle f,g_{1},\ldots ,g_{n}}

  1. f можно записать в виде линейной комбинации ; то есть существуют скаляры такие, что ; g 1 , , g n {\displaystyle g_{1},\ldots ,g_{n}} s 1 , , s n {\displaystyle s_{1},\ldots ,s_{n}} s f = s 1 g 1 + + s n g n {\displaystyle sf=s_{1}g_{1}+\cdots +s_{n}g_{n}}
  2. i = 1 n ker g i ker f {\displaystyle \bigcap _{i=1}^{n}\ker g_{i}\subseteq \ker f} ;
  3. существует действительное число r такое, что для всех и всех | f ( x ) | r g i ( x ) {\displaystyle |f(x)|\leq rg_{i}(x)} x X {\displaystyle x\in X} i = 1 , , n . {\displaystyle i=1,\ldots ,n.}

Если f — нетривиальный линейный функционал на X с ядром N , удовлетворяет и Uсбалансированное подмножество X , то тогда и только тогда, когда для всех [15] x X {\displaystyle x\in X} f ( x ) = 1 , {\displaystyle f(x)=1,} N ( x + U ) = {\displaystyle N\cap (x+U)=\varnothing } | f ( u ) | < 1 {\displaystyle |f(u)|<1} u U . {\displaystyle u\in U.}

Теорема Хана–Банаха

Любой (алгебраический) линейный функционал на векторном подпространстве может быть расширен на все пространство; например, описанные выше оценочные функционалы могут быть расширены на векторное пространство полиномов на всех Однако это расширение не всегда может быть выполнено с сохранением непрерывности линейного функционала. Семейство теорем Хана–Банаха дает условия, при которых это расширение может быть выполнено. Например, R . {\displaystyle \mathbb {R} .}

Теорема Хана–Банаха о доминируемом расширении [18] (Рудин 1991, Теория 3.2)  —  Если — сублинейная функция , а — линейный функционал на линейном подпространстве , которое доминируется p на M , то существует линейное расширение f на все пространство X , которое доминируется p , т. е. существует линейный функционал F такой, что для всех и для всех p : X R {\displaystyle p:X\to \mathbb {R} } f : M R {\displaystyle f:M\to \mathbb {R} } M X {\displaystyle M\subseteq X} F : X R {\displaystyle F:X\to \mathbb {R} } F ( m ) = f ( m ) {\displaystyle F(m)=f(m)} m M , {\displaystyle m\in M,} | F ( x ) | p ( x ) {\displaystyle |F(x)|\leq p(x)} x X . {\displaystyle x\in X.}

Равностепенная непрерывность семейств линейных функционалов

Пусть Xтопологическое векторное пространство (TVS) с непрерывным сопряженным пространством X . {\displaystyle X'.}

Для любого подмножества H следующие условия эквивалентны: [19] X , {\displaystyle X',}

  1. H равностепенно непрерывна ;
  2. H содержится в поляре некоторой окрестностив X ; 0 {\displaystyle 0}
  3. (пре) поляра H является окрестностью в X ; 0 {\displaystyle 0}

Если H является равностепенно непрерывным подмножеством , то следующие множества также равностепенно непрерывны: слабо-* замыкание, сбалансированная оболочка , выпуклая оболочка и выпуклая сбалансированная оболочка . [19] Более того, теорема Алаоглу подразумевает, что слабо-* замыкание равностепенно непрерывного подмножества является слабо-* компактным (и, таким образом, каждое равностепенно непрерывное подмножество слабо-* относительно компактно). [20] [19] X {\displaystyle X'} X {\displaystyle X'}

Смотрите также

Примечания

Сноски

  1. ^ В некоторых текстах роли меняются местами, и векторы определяются как линейные отображения ковекторов в скаляры.
  2. ^ Например, f ( 1 + 1 ) = a + 2 r 2 a + 2 r = f ( 1 ) + f ( 1 ) . {\displaystyle f(1+1)=a+2r\neq 2a+2r=f(1)+f(1).}

Доказательства

  1. ^ Это верно, если так предположить иное. Так как для всех скаляров следует, что Если то пусть и будет таким, что и где если то взять Тогда и так как это действительное число, По предположению так Так как было произвольным, то следует, что B = {\displaystyle B=\varnothing } | Re z | | z | {\displaystyle \left|\operatorname {Re} z\right|\leq |z|} z C , {\displaystyle z\in \mathbb {C} ,} sup x B | φ R ( x ) | sup x B | φ ( x ) | . {\textstyle \sup _{x\in B}\left|\varphi _{\mathbb {R} }(x)\right|\leq \sup _{x\in B}|\varphi (x)|.} b B {\displaystyle b\in B} r b 0 {\displaystyle r_{b}\geq 0} u b C {\displaystyle u_{b}\in \mathbb {C} } | u b | = 1 {\displaystyle \left|u_{b}\right|=1} φ ( b ) = r b u b , {\displaystyle \varphi (b)=r_{b}u_{b},} r b = 0 {\displaystyle r_{b}=0} u b := 1. {\displaystyle u_{b}:=1.} | φ ( b ) | = r b {\displaystyle |\varphi (b)|=r_{b}} φ ( 1 u b b ) = r b {\textstyle \varphi \left({\frac {1}{u_{b}}}b\right)=r_{b}} φ R ( 1 u b b ) = φ ( 1 u b b ) = r b . {\textstyle \varphi _{\mathbb {R} }\left({\frac {1}{u_{b}}}b\right)=\varphi \left({\frac {1}{u_{b}}}b\right)=r_{b}.} 1 u b b B {\textstyle {\frac {1}{u_{b}}}b\in B} | φ ( b ) | = r b sup x B | φ R ( x ) | . {\textstyle |\varphi (b)|=r_{b}\leq \sup _{x\in B}\left|\varphi _{\mathbb {R} }(x)\right|.} b B {\displaystyle b\in B} sup x B | φ ( x ) | sup x B | φ R ( x ) | . {\textstyle \sup _{x\in B}|\varphi (x)|\leq \sup _{x\in B}\left|\varphi _{\mathbb {R} }(x)\right|.} {\displaystyle \blacksquare }

Ссылки

  1. ^ Акслер (2015) стр. 101, §3.92
  2. ^ ab Tu (2011) стр. 19, §3.1
  3. ^ Кацнельсон и Кацнельсон (2008), с. 37, §2.1.3
  4. ^ Акслер (2015) стр. 101, §3.94
  5. ^ Халмош (1974) стр. 20, §13
  6. ^ Лакс 1996
  7. ^ Мизнер, Торн и Уилер (1973) стр. 57
  8. ^ Кларк, Пит Л. Коммутативная алгебра (PDF) . Неопубликовано. Лемма 3.12.
  9. ^ abc Рудин 1991, стр. 57.
  10. ^ abc Narici & Beckenstein 2011, стр. 9–11.
  11. ^ ab Narici & Beckenstein 2011, стр. 10–11.
  12. ^ ab Narici & Beckenstein 2011, стр. 126–128.
  13. ^ Наричи и Бекенштейн 2011, стр. 126.
  14. ^ Рудин 1991, Теорема 1.18
  15. ^ ab Narici & Beckenstein 2011, стр. 128.
  16. ^ Рудин 1991, стр. 63–64.
  17. ^ Наричи и Бекенштейн 2011, стр. 1–18.
  18. ^ Наричи и Бекенштейн 2011, стр. 177–220.
  19. ^ abc Наричи и Бекенштейн 2011, стр. 225–273.
  20. ^ Шефер и Вольф 1999, Следствие 4.3.

Библиография

Retrieved from "https://en.wikipedia.org/w/index.php?title=Linear_form&oldid=1229287189#Dual_vectors_and_bilinear_forms"