Безразмерные величины , или величины размерности один, [1] — это величины, неявно определенные таким образом, что это предотвращает их объединение в единицы измерения . [2] [3] Обычно выражаемые как соотношения , которые согласуются с другой системой, эти величины не требуют явно определенных единиц . Например, объемное содержание алкоголя (ABV) представляет собой объемное соотношение ; его значение остается независимым от конкретных используемых единиц объема , таких как миллилитры на миллилитр (мл/мл).
Число один признано безразмерной базовой величиной . [4] Радианы служат безразмерными единицами для угловых измерений , полученными из универсального отношения 2π к радиусу окружности , равному ее длине. [5]
Безразмерные величины играют решающую роль, выступая в качестве параметров в дифференциальных уравнениях в различных технических дисциплинах. В исчислении такие понятия, как безразмерные отношения в пределах или производных, часто включают безразмерные величины. В дифференциальной геометрии использование безразмерных параметров очевидно в геометрических соотношениях и преобразованиях. Физика опирается на безразмерные числа, такие как число Рейнольдса в гидродинамике , [6] постоянная тонкой структуры в квантовой механике , [7] и фактор Лоренца в теории относительности . [8] В химии свойства состояния и отношения, такие как отношения концентраций мольных долей, являются безразмерными. [9]
Величины, имеющие размерность один, безразмерные величины , регулярно встречаются в науках и формально рассматриваются в области размерного анализа . В 19 веке французский математик Жозеф Фурье и шотландский физик Джеймс Клерк Максвелл внесли значительный вклад в современные концепции размерности и единицы . Более поздние работы британских физиков Осборна Рейнольдса и лорда Рэлея внесли вклад в понимание безразмерных чисел в физике. Опираясь на метод размерного анализа Рэлея, Эдгар Бэкингем доказал теорему π (независимо от предыдущей работы французского математика Жозефа Бертрана ), чтобы формализовать природу этих величин. [10]
Многочисленные безразмерные числа, в основном отношения, были введены в начале 1900-х годов, особенно в областях механики жидкости и теплопередачи . Измерение логарифма отношений как уровней в (производной) единице децибел (дБ) находит широкое применение в настоящее время.
Периодически появлялись предложения «залатать» систему СИ, чтобы уменьшить путаницу относительно физических измерений. Например, в статье 2017 года в журнале Nature [11] утверждалось, что радиан следует формализовать как физическую единицу. Идея была отвергнута [12] на том основании, что такое изменение вызовет несоответствия как для устоявшихся безразмерных групп, таких как число Струхаля , так и для математически различных сущностей, которые имеют одинаковые единицы, такие как крутящий момент ( векторное произведение ) и энергия ( скалярное произведение ). В другом случае в начале 2000-х годов Международный комитет мер и весов обсуждал наименование единицы 1 как « uno », но идея просто ввести новое название СИ для 1 была отклонена. [13] [14] [15]
Теорема Бекингема о π [16] показывает, что справедливость законов физики не зависит от конкретной системы единиц. Утверждение этой теоремы заключается в том, что любой физический закон может быть выражен как тождество, включающее только безразмерные комбинации (отношения или произведения) переменных, связанных законом (например, давление и объем связаны законом Бойля – они обратно пропорциональны). Если бы значения безразмерных комбинаций изменялись вместе с системами единиц, то уравнение не было бы тождеством, и теорема Бекингема не была бы верна.
Другим следствием теоремы является то, что функциональная зависимость между определенным числом (скажем, n ) переменных может быть уменьшена на число (скажем, k ) независимых измерений, встречающихся в этих переменных, чтобы дать набор из p = n − k независимых, безразмерных величин . Для целей экспериментатора различные системы, которые имеют одно и то же описание безразмерной величиной , эквивалентны.
Количество субъектов | |
---|---|
Общие символы | Н |
единица СИ | Безразмерный |
Измерение | 1 |
Целые числа могут представлять безразмерные величины. Они могут представлять дискретные величины, которые также могут быть безразмерными. Более конкретно, счетные числа могут использоваться для выражения счетных величин . [17] [18] Концепция формализована как количество сущностей (символ N ) в ISO 80000-1 . [19] Примерами являются количество частиц и размер популяции . В математике «количество элементов» в наборе называется мощностью . Исчисляемые существительные — это связанная лингвистическая концепция. Счетные числа, такие как количество бит , могут быть объединены с единицами частоты ( обратная секунда ) для получения единиц скорости счета, таких как биты в секунду . Счетные данные — это связанная концепция в статистике. Концепция может быть обобщена, если разрешить нецелым числам учитывать доли полного элемента, например, количество оборотов, равное половине.
Безразмерные величины могут быть получены как отношения величин, которые не являются безразмерными, но чьи размерности сокращаются в математической операции. [19] [20] Примеры коэффициентов размерности один включают вычисление наклонов или некоторых коэффициентов преобразования единиц . Другой набор примеров - это массовые доли или мольные доли , часто записываемые с использованием обозначений частей на единицу, таких как ppm (= 10 −6 ), ppb (= 10 −9 ) и ppt (= 10 −12 ), или, возможно, сбивающим с толку, как отношения двух одинаковых единиц ( кг /кг или моль /моль). Например, спирт по объему , который характеризует концентрацию этанола в алкогольном напитке , может быть записан как мл/100 мл .
Другие распространенные пропорции — это проценты % (= 0,01), ‰ (= 0,001). Некоторые угловые единицы, такие как поворот , радиан и стерадиан, определяются как отношения величин одного рода. В статистике коэффициент вариации — это отношение стандартного отклонения к среднему значению , и он используется для измерения дисперсии данных .
Утверждалось, что величины, определяемые как отношения Q = A / B , имеющие равные размерности в числителе и знаменателе, на самом деле являются лишь безразмерными величинами и по-прежнему имеют физическую размерность, определяемую как dim Q = dim A × dim B −1 . [21] Например, содержание влаги может быть определено как отношение объемов (объемная влажность, м 3 ⋅м −3 , размерность L 3 ⋅L −3 ) или как отношение масс (гравиметрическая влажность, единицы кг ⋅кг −1 , размерность M ⋅M −1 ); обе будут безразмерными величинами, но разной размерности.
Некоторые универсальные размерные физические константы, такие как скорость света в вакууме, универсальная гравитационная постоянная , постоянная Планка , постоянная Кулона и постоянная Больцмана , могут быть нормализованы к 1, если выбраны соответствующие единицы для времени , длины , массы , заряда и температуры . Полученная система единиц известна как естественные единицы , особенно в отношении этих пяти констант, единицы Планка . Однако не все физические константы могут быть нормализованы таким образом. Например, значения следующих констант не зависят от системы единиц, не могут быть определены и могут быть определены только экспериментально: [22]