Колебание

Повторяющееся изменение некоторой меры относительно центрального значения
Недемпфированная система пружина-масса является колебательной системой.

Колебание — это повторяющееся или периодическое изменение, как правило, во времени , некоторой меры относительно центрального значения (часто точки равновесия ) или между двумя или более различными состояниями. Известные примеры колебания включают качающийся маятник и переменный ток . Колебания могут использоваться в физике для аппроксимации сложных взаимодействий, например, между атомами.

Колебания происходят не только в механических системах, но и в динамических системах практически в каждой области науки: например, биение человеческого сердца (для кровообращения), деловые циклы в экономике , циклы популяции хищник-жертва в экологии , геотермальные гейзеры в геологии , вибрация струн гитары и других струнных инструментов , периодическая активация нервных клеток в мозге и периодическое набухание переменных звезд цефеид в астрономии . Термин вибрация как раз и используется для описания механического колебания.

Колебание, особенно быстрое колебание, может быть нежелательным явлением в управлении процессами и теории управления (например, в управлении скользящим режимом ), где целью является сходимость к устойчивому состоянию . В этих случаях это называется дребезжанием или хлопаньем, как дребезжание клапана и хлопанье маршрута .

Простое гармоническое колебание

Простейшая механическая колебательная система представляет собой груз, прикрепленный к линейной пружине , подверженной только весу и натяжению . Такая система может быть аппроксимирована на воздушном столе или ледяной поверхности. Система находится в состоянии равновесия , когда пружина статична. Если система смещена из положения равновесия, на массу действует чистая восстанавливающая сила , стремящаяся вернуть ее в состояние равновесия. Однако при перемещении массы обратно в положение равновесия она приобретает импульс , который заставляет ее двигаться дальше этого положения, устанавливая новую восстанавливающую силу в противоположном направлении. Если к системе добавляется постоянная сила , такая как гравитация , точка равновесия смещается. Время, необходимое для возникновения колебания, часто называют периодом колебания .

Системы, в которых восстанавливающая сила на теле прямо пропорциональна его смещению, такие как динамика системы пружина-масса, математически описываются простым гармоническим осциллятором , а регулярное периодическое движение известно как простое гармоническое движение . В системе пружина-масса колебания происходят, потому что при статическом равновесном смещении масса имеет кинетическую энергию , которая преобразуется в потенциальную энергию, запасенную в пружине в крайних точках ее пути. Система пружина-масса иллюстрирует некоторые общие черты колебания, а именно существование равновесия и наличие восстанавливающей силы, которая становится сильнее, чем дальше система отклоняется от равновесия.

В случае системы пружина-масса закон Гука гласит, что восстанавливающая сила пружины равна: Ф = к х {\displaystyle F=-kx}

Используя второй закон Ньютона , можно вывести дифференциальное уравнение: где х ¨ = к м х = ω 2 х , {\displaystyle {\ddot {x}}=-{\frac {k}{m}}x=-\omega ^{2}x,} ω = к / м {\textstyle \omega ={\sqrt {k/m}}}

Решение этого дифференциального уравнения дает синусоидальную функцию положения: х ( т ) = А потому что ( ω т δ ) {\displaystyle x(t)=A\cos(\omega t-\delta )}

где ω — частота колебания, A — амплитуда, а δфазовый сдвиг функции. Они определяются начальными условиями системы. Поскольку косинус колеблется между 1 и −1 бесконечно, наша система пружина-масса будет колебаться между положительной и отрицательной амплитудой вечно без трения.

Двумерные осцилляторы

В двух или трех измерениях гармонические осцилляторы ведут себя аналогично одномерным. Простейшим примером этого является изотропный осциллятор, где восстанавливающая сила пропорциональна смещению от равновесия с той же восстанавливающей константой во всех направлениях. Ф = к г {\displaystyle {\vec {F}}=-k {\vec {r}}}

Это дает похожее решение, но теперь для каждого направления используется свое уравнение. х ( т ) = А х потому что ( ω т δ х ) , у ( т ) = А у потому что ( ω т δ у ) , {\displaystyle {\begin{align}x(t)&=A_{x}\cos(\omega t-\delta _{x}),\\y(t)&=A_{y}\cos(\omega t-\delta _{y}),\\&\;\,\vdots \end{align}}}

Анизотропные осцилляторы

В случае анизотропных осцилляторов разные направления имеют разные константы восстанавливающих сил. Решение похоже на изотропные осцилляторы, но в каждом направлении есть разная частота. Изменение частот относительно друг друга может дать интересные результаты. Например, если частота в одном направлении вдвое больше, чем в другом, получается рисунок в виде восьмерки. Если отношение частот иррационально, движение является квазипериодическим . Это движение является периодическим по каждой оси, но не является периодическим по отношению к r и никогда не будет повторяться. [1]

Затухающие колебания

Фазовый портрет затухающего осциллятора с возрастающей силой затухания.

Все реальные системы осцилляторов термодинамически необратимы . Это означает, что существуют диссипативные процессы, такие как трение или электрическое сопротивление , которые непрерывно преобразуют часть энергии, запасенной в осцилляторе, в тепло в окружающей среде. Это называется затуханием. Таким образом, колебания имеют тенденцию затухать со временем, если в системе нет какого-либо чистого источника энергии. Простейшее описание этого процесса затухания можно проиллюстрировать затуханием колебаний гармонического осциллятора.

Затухающие осцилляторы создаются при введении силы сопротивления, которая зависит от первой производной положения, или в данном случае скорости. Дифференциальное уравнение, созданное вторым законом Ньютона, добавляет эту силу сопротивления с произвольной константой b . Этот пример предполагает линейную зависимость от скорости. м х ¨ + б х ˙ + к х = 0 {\displaystyle м{\ddot {x}}+b{\dot {x}}+kx=0}

Это уравнение можно переписать так же, как и раньше: где . х ¨ + 2 β х ˙ + ω 0 2 х = 0 , {\displaystyle {\ddot {x}}+2\beta {\dot {x}}+\omega _{0}^{2}x=0,} 2 β = б м {\textstyle 2\beta = {\frac {b}{m}}}

Это дает общее решение: где . х ( т ) = е β т ( С 1 е ω 1 т + С 2 е ω 1 т ) , {\displaystyle x(t)=e^{-\beta t}\left(C_{1}e^{\omega _{1}t}+C_{2}e^{-\omega _{1}t}\right),} ω 1 = β 2 ω 0 2 {\textstyle \omega _{1}={\sqrt {\beta ^{2}-\omega _{0}^{2}}}}

Экспоненциальный член вне скобок — это функция затухания , а β — коэффициент затухания. Существует 3 категории затухающих осцилляторов: недозатухающие, где β < ω 0 ; перезатухающие, где β > ω 0 ; и критически затухающие, где β = ω 0 .

Управляемые колебания

Кроме того, колебательная система может подвергаться воздействию некоторой внешней силы, например, когда цепь переменного тока подключена к внешнему источнику питания. В этом случае говорят, что колебание приводится в движение .

Простейшим примером этого является система пружины и массы с синусоидальной движущей силой. где х ¨ + 2 β х ˙ + ω 0 2 х = ф ( т ) , {\displaystyle {\ddot {x}}+2\beta {\dot {x}}+\omega _{0}^{2}x=f(t),} ф ( т ) = ф 0 потому что ( ω т + δ ) . {\displaystyle f(t)=f_{0}\cos(\omega t+\delta ).}

Это дает решение: где и х ( т ) = А потому что ( ω т δ ) + А т г потому что ( ω 1 т δ т г ) , {\displaystyle x(t)=A\cos(\omega t-\delta )+A_{tr}\cos(\omega _{1}t-\delta _{tr}),} А = ф 0 2 ( ω 0 2 ω 2 ) 2 + 4 β 2 ω 2 {\displaystyle A={\sqrt {\frac {f_{0}^{2}}{(\omega _{0}^{2}-\omega ^{2})^{2}+4\beta ^{2}\omega ^{2}}}}} δ = загар 1 ( 2 β ω ω 0 2 ω 2 ) {\displaystyle \delta =\tan ^{-1}\left({\frac {2\beta \omega }{\omega _{0}^{2}-\omega ^{2}}}\right)}

Второй член x ( t ) является переходным решением дифференциального уравнения. Переходное решение может быть найдено с использованием начальных условий системы.

Некоторые системы могут возбуждаться за счет передачи энергии из окружающей среды. Такая передача обычно происходит, когда системы встроены в поток жидкости . Например, явление флаттера в аэродинамике возникает, когда произвольно малое смещение крыла самолета (от его равновесия) приводит к увеличению угла атаки крыла на поток воздуха и последующему увеличению коэффициента подъемной силы , что приводит к еще большему смещению. При достаточно больших смещениях жесткость крыла доминирует, обеспечивая восстанавливающую силу, которая обеспечивает колебание.

Резонанс

Резонанс возникает в затухающем ведомом осцилляторе, когда ω = ω 0 , то есть когда частота возбуждения равна собственной частоте системы. Когда это происходит, знаменатель амплитуды минимизируется, что максимизирует амплитуду колебаний.

Связанные колебания

Два маятника с одинаковым периодом, закрепленные на струне, действуют как пара связанных осцилляторов. Колебание попеременно происходит между ними.
Экспериментальная установка синхронизации двух часов Гюйгенса

Гармонический осциллятор и системы, которые он моделирует, имеют одну степень свободы . Более сложные системы имеют больше степеней свободы, например, две массы и три пружины (каждая масса прикреплена к фиксированным точкам и друг к другу). В таких случаях поведение каждой переменной влияет на поведение других. Это приводит к связыванию колебаний отдельных степеней свободы. Например, двое маятниковых часов (одинаковой частоты), установленных на общей стене, будут стремиться к синхронизации. Это явление впервые наблюдал Христиан Гюйгенс в 1665 году. [2] Видимые движения сложных колебаний обычно кажутся очень сложными, но более экономичное, вычислительно более простое и концептуально более глубокое описание дается путем разложения движения на нормальные моды .

Простейшая форма связанных осцилляторов — это система из 3 пружин и 2 масс, где массы и константы пружин одинаковы. Эта задача начинается с вывода второго закона Ньютона для обеих масс. { м 1 х ¨ 1 = ( к 1 + к 2 ) х 1 + к 2 х 2 м 2 х ¨ 2 = к 2 х 1 ( к 2 + к 3 ) х 2 {\displaystyle {\begin{cases}m_{1}{\ddot {x}}_{1}=-(k_{1}+k_{2})x_{1}+k_{2}x_{2}\\m_{2}{\ddot {x}}_{2}=k_{2}x_{1}-(k_{2}+k_{3})x_{2}\end{cases}}}

Затем уравнения обобщаются в матричную форму, где , , и Ф = М х ¨ = к х , {\displaystyle F=M{\ddot {x}}=kx,} М = [ м 1 0 0 м 2 ] {\displaystyle M={\begin{bmatrix}m_{1}&0\\0&m_{2}\end{bmatrix}}} х = [ х 1 х 2 ] {\displaystyle x={\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}}} к = [ к 1 + к 2 к 2 к 2 к 2 + к 3 ] {\displaystyle k={\begin{bmatrix}k_{1}+k_{2}&-k_{2}\\-k_{2}&k_{2}+k_{3}\end{bmatrix}}}

Значения k и m можно подставить в матрицы. м 1 = м 2 = м , к 1 = к 2 = к 3 = к , М = [ м 0 0 м ] , к = [ 2 к к к 2 к ] {\displaystyle {\begin{aligned}m_{1}=m_{2}=m,\;\;k_{1}=k_{2}=k_{3}=k,\\M={\begin{bmatrix}m&0\\0&m\end{bmatrix}},\;\;k={\begin{bmatrix}2k&-k\\-k&2k\end{bmatrix}}\end{aligned}}}

Теперь эти матрицы можно включить в общее решение. [ необходимо разъяснение ] ( к М ω 2 ) а = 0 [ 2 к м ω 2 к к 2 к м ω 2 ] = 0 {\displaystyle {\begin{align}\left(kM\omega ^{2}\right)a&=0\\{\begin{bmatrix}2k-m\omega ^{2}&-k\\-k&2k-m\omega ^{2}\end{bmatrix}}&=0\end{align}}}

Определитель этой матрицы дает квадратное уравнение. ( 3 к м ω 2 ) ( к м ω 2 ) = 0 ω 1 = к м , ω 2 = 3 к м {\displaystyle {\begin{align}&\left(3k-m\omega ^{2}\right)\left(km\omega ^{2}\right)=0\\&\omega _{1}={\sqrt {\frac {k}{m}}},\;\;\omega _{2}={\sqrt {\frac {3k}{m}}}\end{align}}}

В зависимости от начальной точки масс эта система имеет 2 возможные частоты (или комбинацию этих двух). Если массы начинают с их смещений в одном направлении, частота будет частотой системы с одной массой, потому что средняя пружина никогда не растягивается. Если две массы начинают в противоположных направлениях, вторая, более быстрая частота будет частотой системы. [1]

Более частные случаи — это связанные осцилляторы, где энергия чередуется между двумя формами колебаний. Хорошо известен маятник Уилберфорса , где колебания чередуются между удлинением вертикальной пружины и вращением объекта на конце этой пружины.

Связанные осцилляторы — это общее описание двух связанных, но разных явлений. Один случай — когда оба колебания взаимно влияют друг на друга, что обычно приводит к возникновению одного, захваченного состояния колебаний, где оба колеблются с компромиссной частотой . Другой случай — когда одно внешнее колебание влияет на внутреннее колебание, но не подвергается его влиянию. В этом случае области синхронизации, известные как языки Арнольда , могут приводить к очень сложным явлениям, например, к хаотической динамике.

Приближение малых колебаний

В физике система с набором консервативных сил и точкой равновесия может быть аппроксимирована как гармонический осциллятор вблизи равновесия. Примером этого является потенциал Леннарда-Джонса , где потенциал задается как: У ( г ) = У 0 [ ( г 0 г ) 12 ( г 0 г ) 6 ] {\displaystyle U(r)=U_{0}\left[\left({\frac {r_{0}}{r}}\right)^{12}-\left({\frac {r_{0}}{r}}\right)^{6}\right]}

Затем находятся точки равновесия функции: г У г г = 0 = У 0 [ 12 г 0 12 г 13 + 6 г 0 6 г 7 ] г г 0 {\displaystyle {\begin{aligned}{\frac {dU}{dr}}&=0=U_{0}\left[-12r_{0}^{12}r^{-13}+6r_{0}^{6}r^{-7}\right]\\\Стрелка вправо r&\approx r_{0}\end{aligned}}}

Затем находится вторая производная, которая используется в качестве эффективной потенциальной константы: γ эфф = г 2 У г г 2 | г = г 0 = У 0 [ 12 ( 13 ) г 0 12 г 14 6 ( 7 ) г 0 6 г 8 ] = 114 У 0 г 2 {\displaystyle {\begin{align}\gamma _{\text{eff}}&=\left.{\frac {d^{2}U}{dr^{2}}}\right|_{r=r_{0}}=U_{0}\left[12(13)r_{0}^{12}r^{-14}-6(7)r_{0}^{6}r^{-8}\right]\\[1ex]&={\frac {114U_{0}}{r^{2}}}\end{align}}}

Система будет испытывать колебания вблизи точки равновесия. Сила, которая создает эти колебания, выводится из эффективной потенциальной константы выше: Ф = γ эфф ( г г 0 ) = м эфф г ¨ {\displaystyle F=-\gamma _{\text{eff}}(rr_{0})=m_{\text{eff}}{\ddot {r}}}

Это дифференциальное уравнение можно переписать в виде простого гармонического осциллятора: г ¨ + γ эфф м эфф ( г г 0 ) = 0 {\displaystyle {\ddot {r}}+{\frac {\gamma _{\text{eff}}}{m_{\text{eff}}}}(r-r_{0})=0}

Таким образом, частота малых колебаний равна: ω 0 = γ эфф м эфф = 114 У 0 г 2 м эфф {\displaystyle \omega _{0}={\sqrt {\frac {\gamma _{\text{eff}}}{m_{\text{eff}}}}}={\sqrt {\frac {114U_{0}}{r^{2}m_{\text{eff}}}}}}

Или, в общем виде [3] ω 0 = г 2 У г г 2 | г = г 0 {\displaystyle \omega _{0}={\sqrt {\left.{\frac {d^{2}U}{dr^{2}}}\right\vert _{r=r_{0}}}}}

Это приближение можно лучше понять, взглянув на потенциальную кривую системы. Представляя потенциальную кривую как холм, на котором, если поместить мяч в любое место кривой, мяч будет катиться вниз по наклону потенциальной кривой. Это верно из-за связи между потенциальной энергией и силой. г У г т = Ф ( г ) {\displaystyle {\frac {dU}{dt}}=-F(r)}

Думая о потенциале таким образом, можно увидеть, что в любом локальном минимуме есть «колодец», в котором шар будет катиться вперед и назад (колебаться) между и . Это приближение также полезно для размышлений об орбитах Кеплера . r min {\displaystyle r_{\text{min}}} r max {\displaystyle r_{\text{max}}}

Непрерывные системы – волны

Когда число степеней свободы становится произвольно большим, система приближается к непрерывности ; примерами служат струна или поверхность водоема . Такие системы имеют (в классическом пределе ) бесконечное число нормальных мод, и их колебания происходят в форме волн, которые могут характерно распространяться.

Математика

Колебание последовательности (показано синим цветом) представляет собой разницу между верхним и нижним пределом последовательности.

Математика колебаний занимается количественным определением величины, на которую последовательность или функция стремится двигаться между крайностями. Существует несколько связанных понятий: колебание последовательности действительных чисел , колебание действительной функции в точке и колебание функции на интервале (или открытом множестве ).

Примеры

Механический

Электрические

Электромеханический

Оптический

Биологический

Человеческое колебание

Экономические и социальные

Климат и геофизика

Астрофизика

Квантово-механический

Химический

Вычисления

Смотрите также

Ссылки

  1. ^ ab Taylor, John R. (2005). Классическая механика. Mill Valley, Калифорния. ISBN 1-891389-22-X. OCLC  55729992.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ Строгац, Стивен (2003). Синхронизация: зарождающаяся наука спонтанного порядка . Hyperion Press. стр. 106–109. ISBN 0-786-86844-9.
  3. ^ "23.7: Малые колебания". Physics LibreTexts . 2020-07-01 . Получено 2022-04-21 .
  • Медиа, связанные с Oscillation на Wikimedia Commons
  • Вибрации Архивировано 14 декабря 2010 г. в Wayback Machine  – глава из онлайн-учебника
Retrieved from "https://en.wikipedia.org/w/index.php?title=Oscillation&oldid=1241854402"