Математическая нотация
Многоиндексная нотация — это математическая нотация , которая упрощает формулы, используемые в многомерном исчислении , уравнениях в частных производных и теории распределений , путем обобщения концепции целочисленного индекса до упорядоченного кортежа индексов.
Определение и основные свойства N - мерный мультииндекс — это кортеж n {\textstyle n}
α = ( α 1 , α 2 , … , α n ) {\displaystyle \alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{n})} неотрицательных целых чисел ( т.е. элемент -мерного множества натуральных чисел , обозначаемого ). n {\textstyle n} N 0 n {\displaystyle \mathbb {N} _{0}^{n}}
Для мультииндексов и определяется: α , β ∈ N 0 n {\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}} x = ( x 1 , x 2 , … , x n ) ∈ R n {\displaystyle x=(x_{1},x_{2},\ldots ,x_{n})\in \mathbb {R} ^{n}}
Покомпонентная сумма и разность α ± β = ( α 1 ± β 1 , α 2 ± β 2 , … , α n ± β n ) {\displaystyle \alpha \pm \beta =(\alpha _{1}\pm \beta _{1},\,\alpha _{2}\pm \beta _{2},\ldots ,\,\alpha _{n}\pm \beta _{n})} Частичный заказ α ≤ β ⇔ α i ≤ β i ∀ i ∈ { 1 , … , n } {\displaystyle \alpha \leq \beta \quad \Leftrightarrow \quad \alpha _{i}\leq \beta _{i}\quad \forall \,i\in \{1,\ldots ,n\}} Сумма компонентов (абсолютное значение) | α | = α 1 + α 2 + ⋯ + α n {\displaystyle |\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}} Факториал α ! = α 1 ! ⋅ α 2 ! ⋯ α n ! {\displaystyle \alpha !=\alpha _{1}!\cdot \alpha _{2}!\cdots \alpha _{n}!} Биномиальный коэффициент ( α β ) = ( α 1 β 1 ) ( α 2 β 2 ) ⋯ ( α n β n ) = α ! β ! ( α − β ) ! {\displaystyle {\binom {\alpha }{\beta }}={\binom {\alpha _{1}}{\beta _{1}}}{\binom {\alpha _{2}}{\beta _{2}}}\cdots {\binom {\alpha _{n}}{\beta _{n}}}={\frac {\alpha !}{\beta !(\alpha -\beta )!}}} Мультиномиальный коэффициент ( k α ) = k ! α 1 ! α 2 ! ⋯ α n ! = k ! α ! {\displaystyle {\binom {k}{\alpha }}={\frac {k!}{\alpha _{1}!\alpha _{2}!\cdots \alpha _{n}!}}={\frac {k!}{\alpha !}}} где . k := | α | ∈ N 0 {\displaystyle k:=|\alpha |\in \mathbb {N} _{0}} Власть x α = x 1 α 1 x 2 α 2 … x n α n {\displaystyle x^{\alpha }=x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\ldots x_{n}^{\alpha _{n}}} .Частная производная высшего порядка ∂ α = ∂ 1 α 1 ∂ 2 α 2 … ∂ n α n , {\displaystyle \partial ^{\alpha }=\partial _{1}^{\alpha _{1}}\partial _{2}^{\alpha _{2}}\ldots \partial _{n}^{\alpha _{n}},} где (см. также 4-градиент ). Иногда также используется обозначение . [1] ∂ i α i := ∂ α i / ∂ x i α i {\displaystyle \partial _{i}^{\alpha _{i}}:=\partial ^{\alpha _{i}}/\partial x_{i}^{\alpha _{i}}} D α = ∂ α {\displaystyle D^{\alpha }=\partial ^{\alpha }}
Некоторые приложения Многоиндексная нотация позволяет расширить многие формулы из элементарного исчисления до соответствующего многомерного случая. Ниже приведены некоторые примеры. Во всех последующих случаях (или ), и (или ). x , y , h ∈ C n {\displaystyle x,y,h\in \mathbb {C} ^{n}} R n {\displaystyle \mathbb {R} ^{n}} α , ν ∈ N 0 n {\displaystyle \alpha ,\nu \in \mathbb {N} _{0}^{n}} f , g , a α : C n → C {\displaystyle f,g,a_{\alpha }\colon \mathbb {C} ^{n}\to \mathbb {C} } R n → R {\displaystyle \mathbb {R} ^{n}\to \mathbb {R} }
Теорема о многочлене ( ∑ i = 1 n x i ) k = ∑ | α | = k ( k α ) x α {\displaystyle \left(\sum _{i=1}^{n}x_{i}\right)^{k}=\sum _{|\alpha |=k}{\binom {k}{\alpha }}\,x^{\alpha }} Мультибиномиальная теорема ( x + y ) α = ∑ ν ≤ α ( α ν ) x ν y α − ν . {\displaystyle (x+y)^{\alpha }=\sum _{\nu \leq \alpha }{\binom {\alpha }{\nu }}\,x^{\nu }y^{\alpha -\nu }.} Обратите внимание, что поскольку x + y — вектор, а α — мультииндекс, выражение слева является сокращением для ( x 1 + y 1 ) α 1 ⋯( x n + y n ) α n .формула Лейбница Для плавных функций и , f {\textstyle f} g {\textstyle g} ∂ α ( f g ) = ∑ ν ≤ α ( α ν ) ∂ ν f ∂ α − ν g . {\displaystyle \partial ^{\alpha }(fg)=\sum _{\nu \leq \alpha }{\binom {\alpha }{\nu }}\,\partial ^{\nu }f\,\partial ^{\alpha -\nu }g.} ряд Тейлора Для аналитической функции в переменных имеем Фактически, для достаточно гладкой функции мы имеем похожее разложение Тейлора , где последний член (остаток) зависит от точной версии формулы Тейлора. Например, для формулы Коши (с интегральным остатком) получаем f {\textstyle f} n {\textstyle n} f ( x + h ) = ∑ α ∈ N 0 n ∂ α f ( x ) α ! h α . {\displaystyle f(x+h)=\sum _{\alpha \in \mathbb {N} _{0}^{n}}{{\frac {\partial ^{\alpha }f(x)}{\alpha !}}h^{\alpha }}.} f ( x + h ) = ∑ | α | ≤ n ∂ α f ( x ) α ! h α + R n ( x , h ) , {\displaystyle f(x+h)=\sum _{|\alpha |\leq n}{{\frac {\partial ^{\alpha }f(x)}{\alpha !}}h^{\alpha }}+R_{n}(x,h),} R n ( x , h ) = ( n + 1 ) ∑ | α | = n + 1 h α α ! ∫ 0 1 ( 1 − t ) n ∂ α f ( x + t h ) d t . {\displaystyle R_{n}(x,h)=(n+1)\sum _{|\alpha |=n+1}{\frac {h^{\alpha }}{\alpha !}}\int _{0}^{1}(1-t)^{n}\partial ^{\alpha }f(x+th)\,dt.} Общий линейный оператор дифференцирования в частных производных Формальный линейный частный дифференциальный оператор -го порядка в переменных записывается как N {\textstyle N} n {\textstyle n} P ( ∂ ) = ∑ | α | ≤ N a α ( x ) ∂ α . {\displaystyle P(\partial )=\sum _{|\alpha |\leq N}{a_{\alpha }(x)\partial ^{\alpha }}.} Интеграция по частям Для гладких функций с компактным носителем в ограниченной области имеем Эта формула используется для определения распределений и слабых производных . Ω ⊂ R n {\displaystyle \Omega \subset \mathbb {R} ^{n}} ∫ Ω u ( ∂ α v ) d x = ( − 1 ) | α | ∫ Ω ( ∂ α u ) v d x . {\displaystyle \int _{\Omega }u(\partial ^{\alpha }v)\,dx=(-1)^{|\alpha |}\int _{\Omega }{(\partial ^{\alpha }u)v\,dx}.}
Пример теоремы Если являются мультииндексами и , то α , β ∈ N 0 n {\displaystyle \alpha ,\beta \in \mathbb {N} _{0}^{n}} x = ( x 1 , … , x n ) {\displaystyle x=(x_{1},\ldots ,x_{n})} ∂ α x β = { β ! ( β − α ) ! x β − α if α ≤ β , 0 otherwise. {\displaystyle \partial ^{\alpha }x^{\beta }={\begin{cases}{\frac {\beta !}{(\beta -\alpha )!}}x^{\beta -\alpha }&{\text{if}}~\alpha \leq \beta ,\\0&{\text{otherwise.}}\end{cases}}}
Доказательство Доказательство следует из правила мощности для обычной производной : если α и β находятся в , то { 0 , 1 , 2 , … } {\textstyle \{0,1,2,\ldots \}}
d α d x α x β = { β ! ( β − α ) ! x β − α if α ≤ β , 0 otherwise. {\displaystyle {\frac {d^{\alpha }}{dx^{\alpha }}}x^{\beta }={\begin{cases}{\frac {\beta !}{(\beta -\alpha )!}}x^{\beta -\alpha }&{\hbox{if}}\,\,\alpha \leq \beta ,\\0&{\hbox{otherwise.}}\end{cases}}} ( 1 )
Предположим , , и . Тогда имеем, что α = ( α 1 , … , α n ) {\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})} β = ( β 1 , … , β n ) {\displaystyle \beta =(\beta _{1},\ldots ,\beta _{n})} x = ( x 1 , … , x n ) {\displaystyle x=(x_{1},\ldots ,x_{n})} ∂ α x β = ∂ | α | ∂ x 1 α 1 ⋯ ∂ x n α n x 1 β 1 ⋯ x n β n = ∂ α 1 ∂ x 1 α 1 x 1 β 1 ⋯ ∂ α n ∂ x n α n x n β n . {\displaystyle {\begin{aligned}\partial ^{\alpha }x^{\beta }&={\frac {\partial ^{\vert \alpha \vert }}{\partial x_{1}^{\alpha _{1}}\cdots \partial x_{n}^{\alpha _{n}}}}x_{1}^{\beta _{1}}\cdots x_{n}^{\beta _{n}}\\&={\frac {\partial ^{\alpha _{1}}}{\partial x_{1}^{\alpha _{1}}}}x_{1}^{\beta _{1}}\cdots {\frac {\partial ^{\alpha _{n}}}{\partial x_{n}^{\alpha _{n}}}}x_{n}^{\beta _{n}}.\end{aligned}}}
Для каждого из функция зависит только от . В приведенном выше примере каждое частное дифференцирование сводится к соответствующему обычному дифференцированию . Следовательно, из уравнения ( 1 ) следует, что обращается в нуль, если хотя бы для одного из . Если это не так, т.е. если в качестве мультииндексов, то
для каждого и следует теорема. ЧТЭ i {\textstyle i} { 1 , … , n } {\textstyle \{1,\ldots ,n\}} x i β i {\displaystyle x_{i}^{\beta _{i}}} x i {\displaystyle x_{i}} ∂ / ∂ x i {\displaystyle \partial /\partial x_{i}} d / d x i {\displaystyle d/dx_{i}} ∂ α x β {\displaystyle \partial ^{\alpha }x^{\beta }} α i > β i {\textstyle \alpha _{i}>\beta _{i}} i {\textstyle i} { 1 , … , n } {\textstyle \{1,\ldots ,n\}} α ≤ β {\textstyle \alpha \leq \beta } d α i d x i α i x i β i = β i ! ( β i − α i ) ! x i β i − α i {\displaystyle {\frac {d^{\alpha _{i}}}{dx_{i}^{\alpha _{i}}}}x_{i}^{\beta _{i}}={\frac {\beta _{i}!}{(\beta _{i}-\alpha _{i})!}}x_{i}^{\beta _{i}-\alpha _{i}}} i {\displaystyle i}
Смотрите также
Ссылки ^ Рид, М.; Саймон, Б. (1980). Методы современной математической физики: функциональный анализ I (пересмотренное и дополненное издание). Сан-Диего: Academic Press. стр. 319. ISBN 0-12-585050-6 . Saint Raymond, Xavier (1991). Элементарное введение в теорию псевдодифференциальных операторов . Глава 1.1. CRC Press. ISBN 0-8493-7158-9 В данной статье использованы материалы из многоиндексной производной от степени PlanetMath , лицензированной по лицензии Creative Commons Attribution/Share-Alike License .