В теории чисел дефицитное число или дефектное число — это положительное целое число n , для которого сумма делителей n меньше 2 n . Эквивалентно, это число, для которого сумма собственных делителей (или аликвотная сумма ) меньше n . Например, собственными делителями числа 8 являются 1, 2 и 4 , и их сумма меньше 8, поэтому 8 является дефицитным.
Обозначая через σ ( n ) сумму делителей, величина 2 n – σ ( n ) называется дефицитом числа . В терминах аликвотной суммы s ( n ) дефицит равен n – s ( n ) .
Первые несколько недостающих чисел:
В качестве примера рассмотрим число 21. Его делители — 1, 3, 7 и 21, а их сумма равна 32. Поскольку 32 меньше 42, число 21 является недостаточным. Его недостача составляет 2 × 21 − 32 = 10.
Поскольку аликвотные суммы простых чисел равны 1, все простые числа являются дефицитными. [1] В более общем смысле, все нечетные числа с одним или двумя различными простыми множителями являются дефицитными. Из этого следует, что существует бесконечно много нечетных дефицитных чисел. Существует также бесконечное количество четных дефицитных чисел, поскольку все степени двойки имеют сумму ( 1 + 2 + 4 + 8 + ... + 2 x -1 = 2 x - 1 ).
В более общем смысле, все степени простых чисел являются неполными, поскольку их единственными собственными делителями являются те, сумма которых составляет , что не превышает . [2]
Все собственные делители неполных чисел являются неполными. [3] Более того, все собственные делители совершенных чисел являются неполными. [4]
Для всех достаточно больших n существует по крайней мере одно недостаточное число в интервале . [5]
С дефицитными числами тесно связаны совершенные числа с σ ( n ) = 2n и избыточные числа с σ ( n ) > 2n .
Никомах был первым, кто подразделил числа на недостаточные, совершенные и избыточные, в своем «Введении в арифметику» (около 100 г. н. э.). Однако он применил эту классификацию только к четным числам . [6]