Солнце Троянцы Юпитера Орбиты планет | Пояс астероидов Астероиды Хильды (Hildas) Околоземные объекты (выборочно) |
Пояс астероидов — это область в форме тора в Солнечной системе , центр которой находится на Солнце и которая примерно охватывает пространство между орбитами планет Юпитер и Марс . Он содержит большое количество твердых тел неправильной формы, называемых астероидами или малыми планетами . Выявленные объекты имеют разные размеры, но намного меньше планет и в среднем находятся на расстоянии около одного миллиона километров (или шестисот тысяч миль) друг от друга. Этот пояс астероидов также называют главным поясом астероидов или главным поясом, чтобы отличать его от других популяций астероидов в Солнечной системе. [1]
Пояс астероидов — это самый маленький и самый внутренний из известных околозвёздных дисков в Солнечной системе. Классы малых тел Солнечной системы в других регионах — это околоземные объекты , кентавры , объекты пояса Койпера , объекты рассеянного диска , седноиды и объекты облака Оорта . Около 60% массы основного пояса содержится в четырёх крупнейших астероидах: Церере , Весте , Палладе и Гигее . Общая масса пояса астероидов оценивается в 3% от массы Луны . [ 2]
Церера, единственный объект в поясе астероидов, достаточно большой, чтобы быть карликовой планетой , имеет диаметр около 950 км, тогда как Веста, Паллада и Гигея имеют средний диаметр менее 600 км. [3] [4] [5] [6] Остальные минералогически классифицированные тела имеют размеры до нескольких метров. [7] Астероидный материал настолько тонко распределен, что многочисленные беспилотные космические аппараты пересекали его без происшествий. [8] Тем не менее, столкновения между крупными астероидами происходят и могут образовывать семейство астероидов , члены которого имеют схожие орбитальные характеристики и состав. Отдельные астероиды в пределах пояса классифицируются по их спектрам , при этом большинство из них попадают в три основные группы: углеродистые ( тип C ), силикатные ( тип S ) и богатые металлами ( тип M ).
Пояс астероидов образовался из первичной солнечной туманности как группа планетезималей , [9] меньших предшественников протопланет . Однако между Марсом и Юпитером гравитационные возмущения от Юпитера нарушили их аккрецию в планету, [9] [10] передав избыточную кинетическую энергию, которая разбила сталкивающиеся планетезимали и большинство зарождающихся протопланет. В результате 99,9% первоначальной массы пояса астероидов было потеряно за первые 100 миллионов лет истории Солнечной системы. [11] Некоторые фрагменты в конечном итоге нашли свой путь во внутреннюю часть Солнечной системы, что привело к ударам метеоритов о внутренние планеты. Орбиты астероидов продолжают заметно возмущены всякий раз, когда их период обращения вокруг Солнца образует орбитальный резонанс с Юпитером. На этих орбитальных расстояниях возникает разрыв Кирквуда , когда они выметаются на другие орбиты. [12]
В 1596 году Иоганн Кеплер написал в своем труде Mysterium Cosmographicum : «Между Марсом и Юпитером я помещаю планету» , изложив свое предсказание, что там будет обнаружена планета. [14] Анализируя данные Тихо Браге , Кеплер пришел к выводу, что между орбитами Марса и Юпитера существует слишком большой разрыв, чтобы соответствовать его собственной модели того, где должны находиться планетарные орбиты. [15]
В анонимной сноске к своему переводу 1766 года « Contemplation de la Nature » Шарля Бонне [ 16] астроном Иоганн Даниэль Тициус из Виттенберга [17] [18] отметил очевидную закономерность в расположении планет, теперь известную как закон Тициуса-Боде . Если начать числовую последовательность с 0, затем включить 3, 6, 12, 24, 48 и т. д., удваивая каждый раз, и добавить четыре к каждому числу и разделить на 10, это дало бы удивительно близкое приближение к радиусам орбит известных планет, измеренным в астрономических единицах , при условии, что была допущена «отсутствующая планета» (эквивалентная 24 в последовательности) между орбитами Марса (12) и Юпитера (48). В своей сноске Тициус заявил: «Но должен ли был Господь Архитектор оставить это пространство пустым? Вовсе нет». [17] Когда Уильям Гершель открыл Уран в 1781 году, орбита планеты точно соответствовала закону, что привело некоторых астрономов к выводу, что планета должна находиться между орбитами Марса и Юпитера. [19]
1 января 1801 года Джузеппе Пиацци , заведующий кафедрой астрономии в Университете Палермо , Сицилия, обнаружил крошечный движущийся объект на орбите с точно таким же радиусом, который предсказывался этой моделью. Он назвал его «Церерой» в честь римской богини урожая и покровительницы Сицилии. Первоначально Пиацци считал, что это комета, но отсутствие у нее комы предполагало , что это планета. [20] Таким образом, вышеупомянутая модель предсказывала большие полуоси всех восьми планет того времени (Меркурия, Венеры, Земли, Марса, Цереры, Юпитера, Сатурна и Урана). Одновременно с открытием Цереры по приглашению Франца Ксавера фон Заха была сформирована неформальная группа из 24 астрономов, получившая название « небесная полиция », с явной целью найти дополнительные планеты; Они сосредоточили свои поиски в области между Марсом и Юпитером, где, согласно закону Тициуса-Боде, должна быть планета. [21] [22]
Примерно 15 месяцев спустя Генрих Ольберс , член небесной полиции, обнаружил второй объект в том же регионе, Палладу. В отличие от других известных планет, Церера и Паллада оставались точками света даже при самых больших увеличениях телескопа, а не распадались на диски. Помимо их быстрого движения, они казались неотличимыми от звезд . [23]
Соответственно, в 1802 году Уильям Гершель предложил выделить их в отдельную категорию, назвав «астероиды», от греческого слова asteroeides , что означает «похожий на звезду». [24] [25] Завершив серию наблюдений Цереры и Паллады, он пришел к выводу, [26]
Ни название планет, ни название комет не может быть дано этим двум звездам с какой-либо языковой корректностью... Они напоминают маленькие звезды настолько, что их едва можно отличить от них. Отсюда их астероидный вид, если я возьму свое имя и назову их Астероидами; оставляя за собой, однако, свободу изменить это название, если появится другое, более выразительное по отношению к их природе.
К 1807 году дальнейшее исследование выявило два новых объекта в регионе: Юнону и Весту . [23] Сожжение Лилиенталя во время наполеоновских войн , где была проделана основная часть работы, [27] положило конец этому первому периоду открытий. [23]
Несмотря на чеканку Гершеля, в течение нескольких десятилетий общепринятой практикой оставалось называть эти объекты планетами [16] и ставить перед их именами префиксы с числами, представляющими последовательность их открытия: 1 Церера, 2 Паллада, 3 Юнона, 4 Веста. Однако в 1845 году астроном Карл Людвиг Хенке обнаружил пятый объект ( 5 Астрея ), и вскоре после этого новые объекты были обнаружены с ускоряющейся скоростью. Подсчет их среди планет становился все более обременительным. В конце концов, они были исключены из списка планет (как впервые предложил Александр фон Гумбольдт в начале 1850-х годов), и чеканка Гершеля «астероиды» постепенно вошла в обиход. [16]
Открытие Нептуна в 1846 году привело к дискредитации закона Тициуса-Боде в глазах ученых, поскольку его орбита была далека от предсказанного положения. На сегодняшний день не было дано научного объяснения этого закона, и астрономы единодушно считают его совпадением. [28]
Выражение «пояс астероидов» вошло в употребление в начале 1850-х годов, хотя точно определить, кто придумал этот термин, сложно. Первое использование на английском языке, по-видимому, относится к переводу 1850 года ( Элиз Отте ) «Космоса » Александра фон Гумбольдта : [29] «[...] и регулярное появление, около 13 ноября и 11 августа, падающих звезд, которые, вероятно, образуют часть пояса астероидов, пересекающих орбиту Земли и движущихся с планетарной скоростью». Другое раннее появление произошло в «Путеводителе по познанию небес » Роберта Джеймса Манна : [ 30] «Орбиты астероидов расположены в широком поясе пространства, простирающемся между крайностями [...]». Американский астроном Бенджамин Пирс, по-видимому, принял эту терминологию и был одним из ее пропагандистов. [31]
К середине 1868 года было обнаружено более 100 астероидов, а в 1891 году введение астрофотографии Максом Вольфом ускорило темпы открытий. [32] К 1921 году было обнаружено в общей сложности 1000 астероидов, [33] к 1981 году — 10 000, [34] и к 2000 году — 100 000. [35] Современные системы наблюдения за астероидами теперь используют автоматизированные средства для обнаружения новых малых планет во все большем количестве.
22 января 2014 года ученые Европейского космического агентства (ЕКА) сообщили об обнаружении, впервые достоверно, водяного пара на Церере, крупнейшем объекте в поясе астероидов. [36] Обнаружение было сделано с использованием возможностей космической обсерватории Гершеля в дальнем инфракрасном диапазоне . [37] Открытие было неожиданным, поскольку кометы , а не астероиды, как правило, считаются «выбрасывающими струи и шлейфы». По словам одного из ученых, «границы между кометами и астероидами становятся все более размытыми». [37]
В 1802 году, вскоре после открытия Паллады, Ольберс предположил Гершелю и Карлу Гауссу , что Церера и Паллада были фрагментами гораздо большей планеты , которая когда-то занимала регион Марса и Юпитера, причем эта планета претерпела внутренний взрыв или кометный удар много миллионов лет назад, [38] в то время как одесский астроном К. Н. Савченко предположил, что Церера, Паллада, Юнона и Веста были вырвавшимися лунами, а не фрагментами взорвавшейся планеты. [39] Большое количество энергии, необходимое для разрушения планеты, в сочетании с низкой совокупной массой пояса, которая составляет всего около 4% от массы Луны Земли, [3] не подтверждает эти гипотезы. Кроме того, значительные химические различия между астероидами становится трудно объяснить, если они происходят с одной и той же планеты. [40]
Современная гипотеза о создании пояса астероидов связана с тем, как, в целом для Солнечной системы, считается, что формирование планет произошло посредством процесса, сопоставимого с давней небулярной гипотезой ; облако межзвездной пыли и газа сжалось под действием гравитации, образовав вращающийся диск материала, который затем сгустился, образовав Солнце и планеты. [41] В течение первых нескольких миллионов лет истории Солнечной системы процесс аккреции липких столкновений вызвал скопление мелких частиц, которые постепенно увеличивались в размерах. Как только сгустки достигли достаточной массы, они смогли притянуть другие тела посредством гравитационного притяжения и стать планетезималями. Эта гравитационная аккреция привела к образованию планет. [42]
Планетезимали в области, которая впоследствии стала поясом астероидов, были сильно возмущены гравитацией Юпитера. [43] Орбитальные резонансы возникали там, где орбитальный период объекта в поясе составлял целую часть орбитального периода Юпитера, возмущение объекта на другую орбиту; область, лежащая между орбитами Марса и Юпитера, содержит много таких орбитальных резонансов. Поскольку Юпитер мигрировал внутрь после своего образования, эти резонансы проносились через пояс астероидов, динамически возбуждая население области и увеличивая их скорости относительно друг друга. [44] В областях, где средняя скорость столкновений была слишком высокой, разрушение планетезималей имело тенденцию доминировать над аккрецией, [45] предотвращая образование планеты. Вместо этого они продолжали вращаться вокруг Солнца, как и прежде, время от времени сталкиваясь. [43]
В ранней истории Солнечной системы астероиды расплавились до некоторой степени, что позволило элементам внутри них дифференцироваться по массе. Некоторые из тел-прародителей, возможно, даже претерпели периоды взрывного вулканизма и образовали магматические океаны. Однако из-за относительно небольшого размера тел период плавления был неизбежно коротким по сравнению с гораздо более крупными планетами и, как правило, закончился около 4,5 миллиардов лет назад, в первые десятки миллионов лет формирования. [46] В августе 2007 года исследование кристаллов циркона в антарктическом метеорите, который, как полагают, произошел от Весты, показало, что он, и, как следствие, остальная часть пояса астероидов, образовались довольно быстро, в течение 10 миллионов лет после возникновения Солнечной системы. [47]
Астероиды не являются первоначальными образцами изначальной Солнечной системы. Они претерпели значительную эволюцию с момента своего образования, включая внутренний нагрев (в первые несколько десятков миллионов лет), плавление поверхности от ударов, космическое выветривание от радиации и бомбардировку микрометеоритами . [48] [49] [50] [51] Хотя некоторые ученые называют астероиды остаточными планетезималями, [52] другие ученые считают их отдельными. [53]
Считается, что современный пояс астероидов содержит лишь малую часть массы изначального пояса. Компьютерное моделирование показывает, что первоначальный пояс астероидов мог содержать массу, эквивалентную массе Земли. [54] В первую очередь из-за гравитационных возмущений большая часть материала была выброшена из пояса в течение примерно 1 миллиона лет с момента формирования, оставив после себя менее 0,1% первоначальной массы. [43] С момента его формирования распределение размеров пояса астероидов оставалось относительно стабильным; существенного увеличения или уменьшения типичных размеров астероидов главного пояса не произошло. [55]
Орбитальный резонанс 4:1 с Юпитером, в радиусе 2,06 астрономических единиц (а.е.), можно считать внутренней границей пояса астероидов. Возмущения Юпитера отправляют тела, блуждающие там, на нестабильные орбиты. Большинство тел, образовавшихся в радиусе этого зазора, были захвачены Марсом (который имеет афелий в 1,67 а.е.) или выброшены его гравитационными возмущениями в ранней истории Солнечной системы. [56] Астероиды Hungaria лежат ближе к Солнцу, чем резонанс 4:1, но защищены от разрушения своим высоким наклоном. [57]
Когда пояс астероидов был впервые сформирован, температуры на расстоянии 2,7 а.е. от Солнца образовали « снеговую линию » ниже точки замерзания воды. Планетезимали, образовавшиеся за пределами этого радиуса, смогли накапливать лед. [58] [59] В 2006 году в поясе астероидов за пределами снеговой линии была обнаружена популяция комет , которые могли стать источником воды для океанов Земли. Согласно некоторым моделям, выделение воды в период формирования Земли было недостаточным для формирования океанов, и требовался внешний источник, такой как кометная бомбардировка. [60]
Внешний пояс астероидов, по-видимому, включает несколько объектов, которые могли прибыть туда в течение последних нескольких сотен лет; в список входит (457175) 2008 GO 98, также известный как 362P. [61]
Вопреки распространенным представлениям, пояс астероидов в основном пуст. Астероиды разбросаны по такому большому объему, что достижение астероида без тщательного прицеливания было бы маловероятным. Тем не менее, в настоящее время известны сотни тысяч астероидов, а общее число колеблется в пределах миллионов и более, в зависимости от нижнего предела размера. Известно, что более 200 астероидов больше 100 км, [63] а исследование в инфракрасном диапазоне длин волн показало, что в поясе астероидов находится от 700 000 до 1,7 миллиона астероидов диаметром 1 км и более. [64]
Число астероидов в главном поясе неуклонно увеличивается с уменьшением размера. Хотя распределение размеров обычно следует степенному закону , на кривой есть «выступы» примерно в5 км и100 км , где обнаружено больше астероидов, чем ожидалось по такой кривой. Большинство астероидов больше, чем примерно120 км в диаметре являются первичными, сохранившимися с эпохи аккреции, тогда как большинство меньших астероидов являются продуктами фрагментации первичных астероидов. Первичная популяция главного пояса была, вероятно, в 200 раз больше, чем сегодня. [65] [66]
Абсолютные величины большинства известных астероидов находятся в диапазоне от 11 до 19, а медиана составляет около 16. [67] В среднем расстояние между астероидами составляет около 965 600 км (600 000 миль), [68] [69] хотя это варьируется в зависимости от семейства астероидов, и более мелкие необнаруженные астероиды могут быть еще ближе. Общая масса пояса астероидов оценивается в2,39 × 10 21 кг, что составляет 3% массы Луны. [2] Четыре крупнейших объекта, Церера, Веста, Паллада и Гигея, содержат приблизительно 62% общей массы пояса, причем 39% приходится только на Цереру. [70] [5]
Современный пояс состоит в основном из трех категорий астероидов: углеродистые астероиды C-типа, силикатные астероиды S-типа и гибридная группа астероидов X-типа. Гибридная группа имеет невыразительные спектры, но их можно разделить на три группы на основе отражательной способности, что дает металлические астероиды M-типа , примитивные P-типа и энстатитовые астероиды E-типа. Были обнаружены дополнительные типы, которые не вписываются в эти основные классы. Существует тенденция состава типов астероидов по увеличению расстояния от Солнца в порядке S, C, P и спектрально невыразительные D-типы . [72]
Углеродистые астероиды , как следует из их названия, богаты углеродом. Они доминируют во внешних областях пояса астероидов, [73] и редки во внутреннем поясе. [72] Вместе они составляют более 75% видимых астероидов. Они более красные по оттенку, чем другие астероиды, и имеют низкое альбедо . Их поверхностный состав похож на углеродистые хондритовые метеориты . Химически их спектры соответствуют изначальному составу ранней Солнечной системы, за исключением водорода, гелия и летучих веществ . [74]
Астероиды S-типа ( богатые силикатами ) чаще встречаются во внутренней области пояса, в пределах 2,5 а.е. от Солнца. [73] [75] Спектры их поверхностей показывают наличие силикатов и некоторого количества металла, но не значительных углеродистых соединений. Это указывает на то, что их материалы были значительно изменены по сравнению с их первичным составом, вероятно, посредством плавления и реформации. Они имеют относительно высокое альбедо и составляют около 17% от общей популяции астероидов. [74]
Астероиды типа М (богатые металлами) обычно находятся в середине главного пояса и составляют большую часть оставшейся части общей популяции. [74] Их спектры напоминают спектры железо-никелевых. Считается, что некоторые из них образовались из металлических ядер дифференцированных тел-предшественников, которые были разрушены в результате столкновения. Однако некоторые силикатные соединения также могут давать похожий вид. Например, крупный астероид типа М 22 Каллиопа, по-видимому, не состоит в основном из металла. [76] Внутри пояса астероидов распределение числа астероидов типа М достигает пика на большой полуоси около 2,7 а.е. [77] Все ли типы М схожи по составу или это метка для нескольких разновидностей, которые не вписываются четко в основные классы C и S, пока не ясно. [78]
Одной из загадок является относительная редкость астероидов V-типа (вестоидов) или базальтовых астероидов в поясе астероидов. [79] Теории образования астероидов предсказывают, что объекты размером с Весту или больше должны образовывать корки и мантии, которые будут состоять в основном из базальтовых пород, в результате чего более половины всех астероидов состоят либо из базальта, либо из оливина . Однако наблюдения показывают, что 99% предсказанного базальтового материала отсутствует. [80] До 2001 года считалось, что большинство базальтовых тел, обнаруженных в поясе астероидов, произошли от астероида Веста (отсюда их название V-тип), но открытие астероида 1459 Магния выявило несколько иной химический состав по сравнению с другими базальтовыми астероидами, обнаруженными до этого, что предполагает иное происхождение. [80] Эта гипотеза была подкреплена дальнейшим открытием в 2007 году двух астероидов во внешнем поясе, 7472 Кумакири и (10537) 1991 RY 16 , с отличающимся базальтовым составом, который не мог произойти от Весты. Эти два являются единственными астероидами V-типа, обнаруженными во внешнем поясе на сегодняшний день. [79]
Температура пояса астероидов меняется в зависимости от расстояния от Солнца. Для пылевых частиц внутри пояса типичные температуры колеблются от 200 К (−73 °C) на расстоянии 2,2 а.е. до 165 К (−108 °C) на расстоянии 3,2 а.е. [82] Однако из-за вращения температура поверхности астероида может значительно меняться, поскольку стороны попеременно подвергаются воздействию солнечного излучения, а затем звездного фона.
Несколько ничем не примечательных тел во внешнем поясе демонстрируют кометную активность. Поскольку их орбиты нельзя объяснить захватом классических комет, многие из внешних астероидов считаются ледяными, причем лед иногда подвергается сублимации из-за небольших ударов. Кометы главного пояса могли быть основным источником океанов Земли, поскольку соотношение дейтерия и водорода слишком низкое для того, чтобы классические кометы были основным источником. [83]
Большинство астероидов в поясе астероидов имеют орбитальные эксцентриситеты менее 0,4 и наклон менее 30°. Орбитальное распределение астероидов достигает максимума при эксцентриситете около 0,07 и наклоне менее 4°. [67] Таким образом, хотя типичный астероид имеет относительно круговую орбиту и лежит вблизи плоскости эклиптики , некоторые астероидные орбиты могут быть сильно эксцентричными или выходить далеко за пределы плоскости эклиптики.
Иногда термин «главный пояс» используется для обозначения только более компактной области «ядра», где находится наибольшая концентрация тел. Она находится между сильными разрывами Кирквуда 4:1 и 2:1 на расстоянии 2,06 и 3,27 а.е. и при орбитальных эксцентриситетах менее примерно 0,33, а также при орбитальных наклонениях менее примерно 20°. По состоянию на 2006 год [обновлять]эта область «ядра» содержала 93% всех открытых и пронумерованных малых планет в пределах Солнечной системы. [84] База данных малых тел JPL содержит более 1 миллиона известных астероидов главного пояса. [85]
Большая полуось астероида используется для описания размеров его орбиты вокруг Солнца, а ее значение определяет орбитальный период малой планеты . В 1866 году Дэниел Кирквуд объявил об открытии разрывов в расстояниях орбит этих тел от Солнца. Они были расположены в положениях, где их период обращения вокруг Солнца был целой частью орбитального периода Юпитера. Кирквуд предположил, что гравитационные возмущения планеты привели к удалению астероидов с этих орбит. [86]
Когда средний орбитальный период астероида составляет целую часть орбитального периода Юпитера, создается резонанс среднего движения с газовым гигантом, достаточный для возмущения астероида до новых орбитальных элементов . Первичные астероиды вошли в эти зазоры из-за миграции орбиты Юпитера. [87] Впоследствии астероиды в основном мигрируют в эти зазорные орбиты из-за эффекта Ярковского , [72] но могут также войти из-за возмущений или столкновений. После входа астероид постепенно подталкивается на другую, случайную орбиту с большей или меньшей большой полуосью.
Высокая численность населения пояса астероидов создает активную среду, в которой столкновения между астероидами происходят часто (в глубоких временных масштабах). Ожидается, что столкновения между телами главного пояса со средним радиусом 10 км будут происходить примерно раз в 10 миллионов лет. [88] Столкновение может раздробить астероид на множество более мелких частей (что приведет к образованию нового семейства астероидов ). [89] И наоборот, столкновения, которые происходят на низких относительных скоростях, также могут объединить два астероида. После более чем 4 миллиардов лет таких процессов члены пояса астероидов теперь мало похожи на первоначальную популяцию.
Данные свидетельствуют о том, что большинство астероидов главного пояса диаметром от 200 м до 10 км представляют собой груды щебня, образованные столкновениями. Эти тела состоят из множества нерегулярных объектов, которые в основном связаны вместе собственной гравитацией, что приводит к значительному количеству внутренней пористости . [90] Наряду с астероидными телами пояс астероидов также содержит полосы пыли с радиусами частиц до нескольких сотен микрометров . Этот мелкий материал образуется, по крайней мере частично, в результате столкновений между астероидами и в результате удара микрометеоритов по астероидам. Из-за эффекта Пойнтинга-Робертсона давление солнечной радиации заставляет эту пыль медленно закручиваться по спирали внутрь к Солнцу. [91]
Сочетание этой мелкой астероидной пыли, а также выброшенного кометного материала, производит зодиакальный свет . Это слабое полярное сияние можно наблюдать ночью, простираясь от направления Солнца вдоль плоскости эклиптики . Астероидные частицы, которые производят видимый зодиакальный свет, имеют средний радиус около 40 мкм. Типичное время жизни частиц зодиакального облака главного пояса составляет около 700 000 лет. Таким образом, для поддержания полос пыли новые частицы должны постоянно производиться внутри пояса астероидов. [91] Когда-то считалось, что столкновения астероидов образуют основной компонент зодиакального света. Однако компьютерное моделирование Несворни и его коллег приписало 85 процентов пыли зодиакального света фрагментации комет семейства Юпитера, а не кометам и столкновениям между астероидами в поясе астероидов. Не более 10 процентов пыли приписывается поясу астероидов. [92]
Некоторые обломки от столкновений могут образовывать метеороиды , которые попадают в атмосферу Земли. [93] Из 50 000 метеоритов, найденных на Земле на сегодняшний день, 99,8 процента, как полагают, возникли в поясе астероидов. [94]
В 1918 году японский астроном Киёцугу Хираяма заметил, что орбиты некоторых астероидов имеют схожие параметры, образуя семейства или группы. [95]
Примерно треть астероидов в поясе астероидов являются членами семейства астероидов. Они имеют схожие элементы орбиты , такие как большая полуось , эксцентриситет и наклон орбиты , а также схожие спектральные характеристики, которые указывают на общее происхождение при распаде более крупного тела. Графические отображения этих пар элементов для членов пояса астероидов показывают концентрации, указывающие на присутствие семейства астероидов. Существует около 20-30 ассоциаций, которые, вероятно, являются семействами астероидов. Были обнаружены дополнительные группировки, которые менее определенны. Семейства астероидов могут быть подтверждены, когда члены демонстрируют схожие спектральные характеристики. [96] Меньшие ассоциации астероидов называются группами или скоплениями.
Некоторые из самых известных семейств в поясе астероидов (в порядке увеличения больших полуосей) - это семейства Флора , Эвномия , Коронис , Эос и Фемида . [77] Семейство Флора, одно из крупнейших с более чем 800 известными членами, могло образоваться в результате столкновения менее 1 миллиарда лет назад. [97] Самый большой астероид, который является истинным членом семейства, - это 4 Веста. (Это контрастирует с нарушителем, в случае Цереры с семейством Гефион .) Считается, что семейство Веста образовалось в результате кратерообразующего удара по Весте. Аналогично, метеориты HED также могли возникнуть на Весте в результате этого столкновения. [98]
В поясе астероидов были обнаружены три заметные полосы пыли. Они имеют схожие наклоны орбит, как и семейства астероидов Эос, Коронис и Фемида, и поэтому, возможно, связаны с этими группами. [99]
Эволюция главного пояса после поздней тяжелой бомбардировки, вероятно, была затронута проходами крупных кентавров и транснептуновых объектов (ТНО). Кентавры и ТНО, которые достигают внутренней части Солнечной системы, могут изменять орбиты астероидов главного пояса, хотя только если их масса порядка10 −9 M ☉ для единичных столкновений или на порядок меньше в случае множественных близких сближений. Однако кентавры и транснептуновые объекты вряд ли значительно рассеяли молодые семейства астероидов в главном поясе, хотя они могли возмущены некоторыми старыми семействами астероидов. Текущие астероиды главного пояса, которые произошли как кентавры или транснептуновые объекты, могут находиться во внешнем поясе с коротким сроком жизни менее 4 миллионов лет, скорее всего, вращаясь между 2,8 и 3,2 а.е. с большими эксцентриситетами, чем типичные для астероидов главного пояса. [100]
Вдоль внутреннего края пояса (в диапазоне от 1,78 до 2,0 а.е. со средней полуосью 1,9 а.е.) располагается семейство малых планет Венгрия . Они названы в честь главного члена, 434 Венгрия ; группа содержит по меньшей мере 52 названных астероида. Группа Венгрия отделена от основного тела зазором Кирквуда 4:1, а их орбиты имеют высокий наклон. Некоторые члены принадлежат к категории астероидов, пересекающих Марс, и гравитационные возмущения Марса, вероятно, являются фактором сокращения общей популяции этой группы. [57]
Другая группа с высоким наклоном во внутренней части пояса астероидов — это семейство Phocaea . Они состоят в основном из астероидов S-типа, тогда как соседнее семейство Hungaria включает в себя некоторые астероиды E-типа . [101] Орбита семейства Phocaea находится на расстоянии от 2,25 до 2,5 а.е. от Солнца. [102]
Огибая внешний край пояса астероидов, находится группа Кибелы , вращающаяся между 3,3 и 3,5 а.е. Они имеют орбитальный резонанс 7:4 с Юпитером. Семейство Хильды вращается между 3,5 и 4,2 а.е. с относительно круговыми орбитами и стабильным орбитальным резонансом 3:2 с Юпитером. За пределами 4,2 а.е., вплоть до орбиты Юпитера, астероидов немного. На последней можно найти два семейства троянских астероидов , которые, по крайней мере для объектов размером более 1 км, примерно так же многочисленны, как астероиды пояса астероидов. [103]
Некоторые семейства астероидов образовались недавно, по астрономическим меркам. Семейство Карин , по-видимому, образовалось около 5,7 миллионов лет назад в результате столкновения с астероидом-прародителем радиусом 33 км. [104] Семейство Веритас образовалось около 8,3 миллионов лет назад; доказательства включают межпланетную пыль, извлеченную из океанических осадков . [105]
Совсем недавно скопление Дурмана , по-видимому, образовалось около 530 000 лет назад в результате столкновения с астероидом главного пояса. Оценка возраста основана на вероятности того, что члены имеют свои текущие орбиты, а не на каких-либо физических доказательствах. Однако это скопление могло быть источником некоторого количества зодиакального пылевого материала. [106] [107] Другие недавние кластерные образования, такие как скопление Ианнини ( около 1–5 миллионов лет назад), могли предоставить дополнительные источники этой астероидной пыли. [108]
Первым космическим аппаратом, пересекшим пояс астероидов, был Pioneer 10 , который вошел в этот регион 16 июля 1972 года. В то время существовали некоторые опасения, что мусор в поясе может представлять опасность для космического аппарата, но с тех пор его благополучно пересекали несколько космических аппаратов без происшествий. Pioneer 11 , Voyagers 1 и 2 и Ulysses прошли через пояс, не сделав снимков астероидов. Cassini измерил плазму и мелкие частицы пыли во время пересечения пояса в 2000 году. [109] На своем пути к Юпитеру Juno пересек пояс астероидов, не собрав научных данных. [110] Из-за низкой плотности материалов внутри пояса вероятность столкновения зонда с астероидом оценивается менее чем в 1 к миллиарду. [111]
Большинство астероидов главного пояса, полученных на сегодняшний день, были получены в результате кратковременных пролетов зондов, направлявшихся к другим целям. Только миссия Dawn изучала астероиды главного пояса в течение длительного периода на орбите. Космический аппарат Galileo сфотографировал 951 Гаспра в 1991 году и 243 Ида в 1993 году, затем NEAR сфотографировал 253 Матильда в 1997 году и приземлился на околоземном астероиде 433 Эрос в феврале 2001 года. Cassini сфотографировал 2685 Мазурский в 2000 году, Stardust сфотографировал 5535 Аннефранк в 2002 году, New Horizons сфотографировал 132524 APL в 2006 году, а Rosetta сфотографировала 2867 Штейнса в сентябре 2008 года и 21 Лютеция в июле 2010 года. Dawn вращался вокруг Весты с июля 2011 года по сентябрь 2012 года и вращается вокруг Цереры с марта 2015 года. [112]
Космический зонд Lucy совершил пролет мимо 152830 Dinkinesh в 2023 году по пути к троянцам Юпитера. [113] Миссия ESA JUICE дважды пройдет через пояс астероидов, а в 2029 году планируется пролет мимо астероида 223 Rosa . [114] Космический аппарат Psyche — это миссия NASA к крупному астероиду M-типа 16 Psyche . [115]
{{cite web}}
: CS1 maint: бот: исходный статус URL неизвестен ( ссылка ){{cite book}}
: CS1 maint: отсутствует местоположение издателя ( ссылка )