Диапазон частот | 3–30 кГц |
---|---|
Диапазон длин волн | 100-10 км |
Радиодиапазоны | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
МСЭ | ||||||||||||
| ||||||||||||
ЕС/НАТО/США ECM | ||||||||||||
ИИЭЭ | ||||||||||||
Другое ТВ и радио | ||||||||||||
Очень низкая частота или ОНЧ — это обозначение МСЭ [1] для радиочастот (РЧ) в диапазоне 3–30 кГц , что соответствует длинам волн от 100 до 10 км соответственно. Диапазон также известен как диапазон мириаметров или волна мириаметров, поскольку длины волн находятся в диапазоне от одного до десяти мириаметров (устаревшая метрическая единица, равная 10 километрам). Из-за ограниченной полосы пропускания передача звука (голоса) в этом диапазоне крайне непрактична, и поэтому используются только кодированные сигналы с низкой скоростью передачи данных . Диапазон ОНЧ используется для нескольких радионавигационных служб, правительственных радиостанций точного времени (трансляция сигналов времени для установки радиочасов ) и для защищенной военной связи. Поскольку волны ОНЧ могут проникать на глубину не менее 40 метров (131 фут) в соленую воду, они используются для военной связи с подводными лодками .
Из-за своих больших длин волн радиоволны ОНЧ могут дифрагировать вокруг больших препятствий и, таким образом, не блокируются горными хребтами, и могут распространяться как земные волны, следуя кривизне Земли и, таким образом, не ограничиваясь горизонтом. Земные волны поглощаются сопротивлением Земли и менее важны за пределами нескольких сотен-тысяч километров/миль, а основным режимом распространения на большие расстояния является волноводный механизм Земля-ионосфера . [2] Земля окружена проводящим слоем электронов и ионов в верхней атмосфере в нижней части ионосферы, называемым слоем D на высоте 60–90 км (37–56 миль), [3] который отражает радиоволны ОНЧ. Проводящая ионосфера и проводящая Земля образуют горизонтальный «канал» высотой в несколько длин волн ОНЧ, который действует как волновод , ограничивающий волны, чтобы они не уходили в космос. Волны распространяются по зигзагообразной траектории вокруг Земли, попеременно отражаясь от Земли и ионосферы, в поперечном магнитном (ТМ) режиме.
Волны VLF имеют очень низкое затухание на пути, 2–3 дБ на 1000 км, [2] с небольшим « замиранием », испытываемым на более высоких частотах. [3] Это происходит потому, что волны VLF отражаются от нижней части ионосферы, в то время как сигналы с более высокой частотой возвращаются на Землю из более высоких слоев ионосферы, слоев F1 и F2 , в результате процесса рефракции и проводят большую часть своего пути в ионосфере, поэтому они гораздо больше подвержены влиянию градиентов ионизации и турбулентности. Поэтому передачи VLF очень стабильны и надежны и используются для дальней связи. Были реализованы расстояния распространения 5000–20 000 км. [2] Однако атмосферный шум (« сферики ») высок в этом диапазоне, [3] включая такие явления, как « свисты », вызываемые молниями .
Основным практическим недостатком диапазона ОНЧ является то, что из-за длины волн полноразмерные резонансные антенны ( полуволновые дипольные или четвертьволновые монопольные антенны) не могут быть построены из-за их физической высоты. [5] : 14 Необходимо использовать вертикальные антенны, поскольку волны ОНЧ распространяются в вертикальной поляризации, но четвертьволновая вертикальная антенна на частоте 30 кГц (длина волны 10 км) будет иметь высоту 2,5 километра (8200 футов). Таким образом, практические передающие антенны электрически короткие , что составляет небольшую часть длины, на которой они были бы саморезонансными. [6] [7] : 24,5–24,6 Из-за их низкого сопротивления излучения (часто менее одного Ома) они неэффективны, излучая максимум только 10% - 50% мощности передатчика, [2] [5] : 14 а остальная мощность рассеивается в сопротивлениях системы антенна/заземление. Для связи на больших расстояниях требуются передатчики очень высокой мощности (~1 мегаватт), поэтому эффективность антенны является важным фактором.
Высокомощные передающие станции ОНЧ используют монопольные антенны с емкостной верхней загрузкой . Это очень большие проволочные антенны, длиной до нескольких километров. [8] : 3.9–3.21 [7] : 24.8–24.12 Они состоят из ряда стальных радиомачт , связанных наверху сетью кабелей, часто в форме зонтика или бельевых веревок. [5] : стр.14 Либо сами башни, либо вертикальные провода служат монопольными излучателями, а горизонтальные кабели образуют емкостную верхнюю нагрузку для увеличения тока в вертикальных проводах, увеличивая излучаемую мощность и эффективность антенны. Высокомощные станции используют вариации зонтичной антенны, такие как антенны «дельта» и « тридеко », или многопроволочные антенны с плоской вершиной (триатические). [5] : стр.129-162 Для маломощных передатчиков используются перевернутые Г-образные и Т-образные антенны .
Из-за низкого сопротивления излучения, чтобы минимизировать мощность, рассеиваемую в земле, эти антенны требуют крайне низкоомных систем заземления , состоящих из радиальных сетей зарытых медных проводов под антенной. Чтобы минимизировать диэлектрические потери в почве, заземляющие проводники закапываются неглубоко, всего на несколько дюймов в землю, а поверхность земли около антенны иногда защищается медными экранами заземления. Также использовались системы противовеса , состоящие из радиальных сетей медных кабелей, поддерживаемых на высоте нескольких футов над землей под антенной.
Большая нагрузочная катушка требуется в точке питания антенны, чтобы компенсировать емкостное сопротивление антенны, чтобы сделать ее резонансной . На ОНЧ конструкция этой катушки является сложной; она должна иметь низкое сопротивление на рабочей частоте ВЧ, высокую добротность , должна выдерживать очень высокие токи и должна выдерживать чрезвычайно высокое напряжение на антенне. Обычно это огромные катушки с воздушным сердечником высотой 2-4 метра, намотанные на непроводящий каркас, с сопротивлением ВЧ, уменьшенным за счет использования толстой проволоки литцендрат диаметром в несколько сантиметров, состоящей из тысяч изолированных нитей тонкой проволоки, сплетенных вместе. [5] : стр.95
Высокая емкость и индуктивность, а также низкое сопротивление комбинации антенны и нагрузочной катушки заставляют ее действовать электрически как высокодобротная настроенная схема . Антенны VLF имеют очень узкую полосу пропускания , и для изменения частоты передачи требуется переменный индуктор ( вариометр ) для настройки антенны. Большие антенны VLF, используемые для мощных передатчиков, обычно имеют полосу пропускания всего 50–100 Гц. Высокая добротность приводит к очень высоким напряжениям (до 250 кВ) [5] : стр.58 на антенне, и требуется очень хорошая изоляция. [5] : стр.14,19 Большие антенны VLF обычно работают в режиме «ограничения напряжения»: максимальная мощность передатчика ограничена напряжением, которое антенна может принять без пробоя воздуха , коронного разряда и искрения от антенны.
Полоса пропускания больших емкостно-нагруженных антенн VLF настолько узка (50–100 Гц), что даже небольшие сдвиги частоты модуляции FSK и MSK могут ее превысить, выводя антенну из резонанса , заставляя антенну отражать некоторую мощность обратно вниз по фидерной линии. Традиционное решение заключается в использовании «резистора полосы пропускания» в антенне, который уменьшает Q , увеличивая полосу пропускания; однако это также снижает выходную мощность. Недавняя альтернатива, используемая в некоторых военных передатчиках VLF, представляет собой схему, которая динамически сдвигает резонансную частоту антенны между двумя выходными частотами с помощью модуляции. [7] : 24,7 [8] : 3,36 Это достигается с помощью насыщаемого реактора, включенного последовательно с нагрузочной катушкой антенны . Это ферромагнитный сердечник индуктивности со второй обмоткой управления, через которую протекает постоянный ток, который управляет индуктивностью путем намагничивания сердечника, изменяя его проницаемость . Поток данных манипуляции подается на обмотку управления. Таким образом, когда частота передатчика смещается между частотами «1» и «0», насыщающийся реактор изменяет индуктивность в резонансном контуре антенны, чтобы сместить резонансную частоту антенны в соответствии с частотой передатчика.
Требования к приемным антеннам менее строгие из-за высокого уровня естественного атмосферного шума в диапазоне. На частотах ОНЧ атмосферный радиошум намного превышает шум приемника , вносимый схемой приемника, и определяет отношение сигнал/шум приемника . Поэтому можно использовать небольшие неэффективные приемные антенны, а низковольтный сигнал с антенны может просто усиливаться приемником без внесения значительного шума. Для приема обычно используются ферритовые рамочные антенны .
Из-за небольшой полосы пропускания диапазона и чрезвычайно узкой полосы пропускания используемых антенн непрактично передавать аудиосигналы ( радиотелефония AM или FM ). [9] Типичный радиосигнал AM с полосой пропускания 10 кГц занял бы одну треть диапазона VLF. Что еще более важно, было бы трудно передавать на любое расстояние, поскольку для этого потребовалась бы антенна с полосой пропускания в 100 раз большей, чем у современных антенн VLF, что из-за предела Чу-Харрингтона было бы огромным по размеру. Поэтому можно передавать только текстовые данные с низкой скоростью передачи данных . В военных сетях модуляция частотной манипуляции (FSK) используется для передачи радиотелетайпных данных с использованием 5-битных кодов символов ITA2 или 8-битных кодов символов ASCII . Небольшой сдвиг частоты в 30–50 Гц используется из-за небольшой полосы пропускания антенны.
В мощных ОНЧ-передатчиках для увеличения допустимой скорости передачи данных используется специальная форма FSK, называемая минимально-сдвиговой манипуляцией (MSK). Это необходимо из-за высокой добротности антенны. [8] : 3.2–3.4, §3.1.1 Огромная емкостная антенна и загрузочная катушка образуют высокодобротную настроенную схему , которая хранит колебательную электрическую энергию. Добротность больших ОНЧ-антенн обычно превышает 200; это означает, что антенна хранит гораздо больше энергии (в 200 раз больше), чем подается или излучается за любой одиночный цикл тока передатчика. Энергия попеременно хранится в виде электростатической энергии в верхней нагрузке и системе заземления и магнитной энергии в вертикальных проводах и загрузочной катушке. ОНЧ-антенны обычно работают «с ограничением по напряжению», при этом напряжение на антенне близко к пределу, который выдержит изоляция, поэтому они не допустят никаких резких изменений напряжения или тока от передатчика без искрения или других проблем с изоляцией. Как описано ниже, MSK способен модулировать передаваемую волну на более высоких скоростях передачи данных, не вызывая скачков напряжения на антенне.
В передатчиках ОНЧ используются три типа модуляции :
Исторически этот диапазон использовался для дальней трансокеанской радиосвязи в эпоху беспроводной телеграфии между 1905 и 1925 годами. Страны построили сети мощных станций радиотелеграфии LF и VLF , которые передавали текстовую информацию кодом Морзе , для связи с другими странами, их колониями и военно-морскими флотами. Были предприняты ранние попытки использовать радиотелефон с использованием амплитудной модуляции и однополосной модуляции в диапазоне, начинающемся с 20 кГц, но результат оказался неудовлетворительным, поскольку доступная полоса пропускания была недостаточной для содержания боковых полос .
В 1920-х годах открытие метода распространения радиоволн через небесную волну (skip) позволило передатчикам меньшей мощности, работающим на высокой частоте , общаться на схожих расстояниях, отражая свои радиоволны от слоя ионизированных атомов в ионосфере , и станции дальней радиосвязи переключились на частоты коротких волн . Передатчик Grimeton VLF в Grimeton около Варберга в Швеции , один из немногих оставшихся передатчиков той эпохи, который был сохранен как исторический памятник, может посещаться общественностью в определенное время, например, в День Александерссона .
Благодаря большой дальности распространения и стабильным фазовым характеристикам в течение XX века диапазон ОНЧ использовался для гиперболических радионавигационных систем дальнего действия, которые позволяли кораблям и самолетам определять свое географическое положение путем сравнения фазы радиоволн, полученных от стационарных передатчиков навигационных маяков ОНЧ .
Всемирная система «Омега» использовала частоты от 10 до 14 кГц, как и российская «Альфа» .
VLF также использовался для стандартного времени и частотных вещаний. В США станция точного времени WWVL начала передавать сигнал мощностью 500 Вт на частоте 20 кГц в августе 1963 года. Она использовала частотную манипуляцию ( FSK ) для передачи данных, сдвигая их между 20 кГц и 26 кГц. Служба WWVL была прекращена в июле 1972 года.
Естественные сигналы в диапазоне ОНЧ используются геофизиками для определения местоположения молний на больших расстояниях и для исследования атмосферных явлений, таких как полярное сияние. Измерения свистящих метеоров используются для определения физических свойств магнитосферы . [ 10]
Геофизики используют ОНЧ- электромагнитные приемники для измерения проводимости вблизи поверхности Земли. [11]
Сигналы VLF могут быть измерены как геофизическая электромагнитная съемка, которая опирается на передаваемые токи, вызывающие вторичные отклики в проводящих геологических единицах. Аномалия VLF представляет собой изменение в положении электромагнитного вектора, залегающего над проводящими материалами в недрах.
Волны ОНЧ также способны проникать через почву и скальные породы на некоторое расстояние, поэтому эти частоты также используются для систем связи в шахтах, проходящих через землю .
Мощные передатчики VLF используются военными для связи со своими силами по всему миру. Преимущество частот VLF заключается в их большой дальности, высокой надежности и прогнозе, что в ядерной войне связь VLF будет меньше нарушена ядерными взрывами, чем более высокие частоты. Поскольку они могут проникать в морскую воду, VLF используются военными для связи с подводными лодками, находящимися вблизи поверхности, в то время как частоты ELF используются для глубоководных подлодок.
Примерами морских ОНЧ-передатчиков являются:
С 2004 года ВМС США прекратили использование передач на СНЧ-диапазоне, заявив, что усовершенствования в области связи ОНЧ сделали их ненужными, поэтому, возможно, была разработана технология, позволяющая подводным лодкам принимать передачи на ОНЧ-диапазоне, находясь на глубине.
Высокомощные наземные и воздушные передатчики в странах, где эксплуатируются подводные лодки, посылают сигналы, которые могут быть приняты на расстоянии в тысячи миль. Места размещения передатчиков обычно охватывают большие площади (многие акры или квадратные километры), с передаваемой мощностью от 20 кВт до 2000 кВт. Подводные лодки принимают сигналы от наземных и воздушных передатчиков с помощью некоторой формы буксируемой антенны, которая плавает прямо под поверхностью воды, например, плавающей антенной с кабельной решеткой (BCAA).
Современные приемники используют сложные методы цифровой обработки сигнала для устранения эффектов атмосферного шума (в основном вызванного ударами молний по всему миру) и сигналов соседних каналов, расширяя полезный диапазон приема. Стратегические ядерные бомбардировщики ВВС США принимают сигналы ОНЧ в рамках усиленных ядерных устойчивых операций.
Могут использоваться два альтернативных набора символов: 5-битный ITA2 или 8-битный ASCII . Поскольку это военные передачи, они почти всегда шифруются из соображений безопасности. Хотя относительно легко получить передачи и преобразовать их в строку символов, враги не могут расшифровать зашифрованные сообщения; военные коммуникации обычно используют невзламываемые одноразовые шифры , поскольку объем текста очень мал.
Диапазон частот ниже 8,3 кГц не выделен Международным союзом электросвязи и в некоторых странах может использоваться без лицензии. Радиолюбителям в некоторых странах было предоставлено разрешение (или принятое разрешение) работать на частотах ниже 8,3 кГц. [12]
Операции, как правило, сосредоточены вокруг частот 8,27 кГц, 6,47 кГц, 5,17 кГц и 2,97 кГц. [13] Передачи обычно длятся от одного часа до нескольких дней, и как приемник, так и передатчик должны иметь свою частоту, привязанную к стабильному опорному источнику, такому как дисциплинированный генератор GPS или рубидиевый стандарт , чтобы поддерживать такое длительное когерентное обнаружение и декодирование.
Излучаемая мощность любительских станций очень мала, от 1 мкВт до 100 мкВт для антенн фиксированных базовых станций и до 10 мВт от антенн воздушных змеев или воздушных шаров. Несмотря на низкую мощность, стабильное распространение с малым затуханием в полости земля-ионосфера позволяет использовать очень узкие полосы пропускания для достижения расстояний до нескольких тысяч километров. Используемые режимы: QRSS , MFSK и когерентная BPSK .
Передатчик обычно состоит из аудиоусилителя мощностью несколько сотен ватт, трансформатора согласования импеданса, нагрузочной катушки и большой проволочной антенны. Приемники используют зонд электрического поля или антенну с магнитной рамкой, чувствительный аудиоусилитель, изолирующие трансформаторы и звуковую карту ПК для оцифровки сигнала. Для извлечения слабых сигналов из-под помех от гармоник линии электропередач и атмосферных помех сверхнизких частот требуется обширная цифровая обработка сигнала . Полезные принимаемые уровни сигнала составляют всего лишь3 × 10 −8 вольт/метр (электрическое поле) и1 × 10 −16 Тесла (магнитное поле), со скоростью передачи сигналов обычно от 1 до 100 бит в час.
Сигналы ОНЧ часто отслеживаются радиолюбителями с помощью простых самодельных ОНЧ- радиоприемников на базе персональных компьютеров (ПК). [14] [15] Антенна в виде катушки изолированного провода подключается к входу звуковой карты ПК (через штекер) и размещается на расстоянии нескольких метров от него. Программное обеспечение быстрого преобразования Фурье (БПФ) в сочетании со звуковой картой позволяет принимать все частоты ниже частоты Найквиста одновременно в виде спектрограмм .
Поскольку мониторы с ЭЛТ являются сильными источниками шума в диапазоне ОНЧ, рекомендуется записывать спектрограммы при выключенных мониторах с ЭЛТ ПК. Эти спектрограммы показывают множество сигналов, которые могут включать передатчики ОНЧ и горизонтальное отклонение электронного луча телевизоров. Сила принимаемого сигнала может меняться при внезапном возмущении ионосферы . Это приводит к повышению уровня ионизации в ионосфере, что приводит к быстрому изменению амплитуды и фазы принимаемого сигнала ОНЧ.
Более подробный список см. в разделе Список VLF-передатчиков.
Позывной | Частота | Расположение передатчика | Замечания |
---|---|---|---|
— | 11,905 кГц | разные локации (Россия) | Альфа-Навигация |
— | 12,649 кГц | разные локации (Россия) | Альфа-Навигация |
— | 14,881 кГц | разные локации (Россия) | Альфа-Навигация |
ХВУ | 15,1 кГц | Росне (Франция) | 400 кВт [16] |
— | 15,625 кГц | — | Частота горизонтального отклонения электронного луча в телевизорах с ЭЛТ ( 576i ) |
— | 15,734 кГц | — | Частота горизонтального отклонения электронного луча в телевизорах с ЭЛТ ( 480i ) |
JXN | 16,4 кГц | Муниципалитет Гильдескол (Норвегия) | |
SAQ | 17,2 кГц | Гриметон (Швеция) | Действует только в особых случаях ( День Александерссона ) |
НАА | 17,8 кГц | Станция VLF (NAA) в Катлере , штат Мэн (США) [17] | |
RDL UPD UFQE UPP UPD8 | 18,1 кГц | различные локации, в том числе Маточкин Шар (Россия) [16] | |
ХВУ | 18,3 кГц | Ле Блан (Франция) | Часто бездействует в течение длительных периодов времени |
РКС | 18,9 кГц | разные локации (Россия) | Редко активен |
ГКД | 19,6 кГц | Энторн (Великобритания) | Множество режимов работы. |
НВК | 19,8 кГц | Эксмут , Западная Австралия (Австралия) | Используется для подводной связи, 1 мегаватт. [18] |
МТС | 20,27 кГц | Таволара (Италия) | |
РЖХ63 РЖХ66 РЖХ69 РЖХ77 РЖХ99 | 20,5 кГц | разные локации (Россия) | Передатчик сигнала времени Бета |
МТС | 20,76 кГц | Таволара (Италия) | |
ХВУ | 20,9 кГц | Сент-Ассиз (Франция) [16] | |
РДЛ | 21,1 кГц | разные локации (Россия) | редко активен |
НПМ | 21,4 кГц | Гавайи (США) | |
ХВУ | 21,75 кГц | Росне (Франция) [16] | |
ГЗК | 22,1 кГц | Скелтон (Великобритания) | |
ДЖИ | 22,2 кГц | Эбино (Япония) | |
РЖХ63 РЖХ66 РЖХ69 РЖХ77 РЖХ99 | 23 кГц | разные локации (Россия) | Передатчик сигнала времени Бета |
ДХО38 | 23,4 кГц | около Раудерфена (Германия) | подводная связь |
НАА | 24 кГц | Катлер, Мэн (США) | Используется для подводной связи, мощность 2 мегаватта [19] |
НЛК | 24,6 кГц | Осо, Вашингтон (США) | 192 кВт [16] |
НФЛ | 24,8 кГц | Арлингтон, Вашингтон (США) | Используется для связи на подводных лодках. [20] |
НМЛ | 25,2 кГц | Ламур, Северная Дакота (США) | |
ПНШ | 14–25,2 кГц | Побережье Карачи , Синд (Пакистан) |
{{cite book}}
: CS1 maint: numeric names: authors list (link)