Теория пластин

Математическая модель напряжений в плоских пластинах под нагрузкой
Режим колебаний зажатой квадратной пластины

В механике сплошной среды теории пластин являются математическими описаниями механики плоских пластин , которые опираются на теорию балок . Пластины определяются как плоские структурные элементы с малой толщиной по сравнению с плоскими размерами. [1] Типичное отношение толщины к ширине пластинчатой ​​конструкции составляет менее 0,1. [ необходима ссылка ] Теория пластин использует это несоответствие в масштабе длины, чтобы свести полную трехмерную задачу механики твердого тела к двумерной задаче. Целью теории пластин является расчет деформации и напряжений в пластине, подверженной нагрузкам .

Из многочисленных теорий пластин, которые были разработаны с конца 19 века, две широко приняты и используются в технике. Это

  • теория пластин Кирхгофа – Лява ( классическая теория пластин )
  • Теория пластин Уфлянда-Миндлина (теория пластин сдвига первого порядка)

Теория Кирхгофа–Лява для тонких пластин

Деформация тонкой пластины, показывающая смещение, срединную поверхность (красный) и нормаль к срединной поверхности (синий)

Теория КирхгофаЛява является расширением теории балок Эйлера – Бернулли на тонкие пластины. Теория была разработана в 1888 году Лявом [2] с использованием предположений, предложенных Кирхгофом. Предполагается, что срединная плоскость поверхности может быть использована для представления трехмерной пластины в двумерной форме.

В этой теории сделаны следующие кинематические предположения: [3]

  • прямые линии, перпендикулярные срединной поверхности, остаются прямыми после деформации
  • прямые линии, нормальные к срединной поверхности, остаются нормальными к срединной поверхности после деформации
  • толщина пластины не изменяется при деформации.

Поле смещения

Гипотеза Кирхгофа подразумевает, что поле перемещений имеет вид

ты α ( х ) = ты α 0 ( х 1 , х 2 ) х 3   ж 0 х α = ты α 0 х 3   ж , α 0   ;     α = 1 , 2 ты 3 ( х ) = ж 0 ( х 1 , х 2 ) {\displaystyle {\begin{aligned}u_{\alpha }(\mathbf {x} )&=u_{\alpha }^{0}(x_{1},x_{2})-x_{3}~{\frac {\partial w^{0}}{\partial x_{\alpha }}}=u_{\alpha }^{0}-x_{3}~w_{,\alpha }^{0}~;~~\alpha =1,2\\u_{3}(\mathbf {x} )&=w^{0}(x_{1},x_{2})\end{aligned}}}

где и — декартовы координаты на срединной поверхности недеформированной пластины, — координата для направления толщины, — смещения срединной поверхности в плоскости, — смещение срединной поверхности в направлении. x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} x 3 {\displaystyle x_{3}} u 1 0 , u 2 0 {\displaystyle u_{1}^{0},u_{2}^{0}} w 0 {\displaystyle w^{0}} x 3 {\displaystyle x_{3}}

Если – углы поворота нормали к срединной поверхности, то в теории Кирхгофа–Лява φ α {\displaystyle \varphi _{\alpha }} φ α = w , α 0 . {\displaystyle \varphi _{\alpha }=w_{,\alpha }^{0}\,.}

Смещение срединной поверхности (слева) и нормали (справа)

Соотношения деформации и смещения

Для ситуации, когда деформации в пластине бесконечно малы, а повороты нормалей срединной поверхности составляют менее 10°, соотношения между деформациями и смещениями имеют вид

ε α β = 1 2 ( u α , β 0 + u β , α 0 ) x 3   w , α β 0 ε α 3 = w , α 0 + w , α 0 = 0 ε 33 = 0 {\displaystyle {\begin{aligned}\varepsilon _{\alpha \beta }&={\tfrac {1}{2}}(u_{\alpha ,\beta }^{0}+u_{\beta ,\alpha }^{0})-x_{3}~w_{,\alpha \beta }^{0}\\\varepsilon _{\alpha 3}&=-w_{,\alpha }^{0}+w_{,\alpha }^{0}=0\\\varepsilon _{33}&=0\end{aligned}}}

Поэтому ненулевые деформации возникают только в направлениях плоскости.

Если повороты нормалей к срединной поверхности находятся в диапазоне от 10° до 15°, то соотношения деформации-перемещения можно аппроксимировать с помощью деформаций фон Кармана . Тогда кинематические предположения теории Кирхгофа-Лява приводят к следующим соотношениям деформации-перемещения

ε α β = 1 2 ( u α , β 0 + u β , α 0 + w , α 0   w , β 0 ) x 3   w , α β 0 ε α 3 = w , α 0 + w , α 0 = 0 ε 33 = 0 {\displaystyle {\begin{aligned}\varepsilon _{\alpha \beta }&={\frac {1}{2}}(u_{\alpha ,\beta }^{0}+u_{\beta ,\alpha }^{0}+w_{,\alpha }^{0}~w_{,\beta }^{0})-x_{3}~w_{,\alpha \beta }^{0}\\\varepsilon _{\alpha 3}&=-w_{,\alpha }^{0}+w_{,\alpha }^{0}=0\\\varepsilon _{33}&=0\end{aligned}}}

Эта теория является нелинейной из-за квадратичных членов в соотношениях деформации и смещения.

Уравнения равновесия

Уравнения равновесия для пластины могут быть выведены из принципа виртуальной работы . Для ситуации, когда деформации и повороты пластины малы, уравнения равновесия для ненагруженной пластины задаются как

N α β , α = 0 M α β , α β = 0 {\displaystyle {\begin{aligned}N_{\alpha \beta ,\alpha }&=0\\M_{\alpha \beta ,\alpha \beta }&=0\end{aligned}}}

где результирующие напряжения и результирующие моменты напряжений определяются как

N α β := h h σ α β   d x 3   ;     M α β := h h x 3   σ α β   d x 3 {\displaystyle N_{\alpha \beta }:=\int _{-h}^{h}\sigma _{\alpha \beta }~dx_{3}~;~~M_{\alpha \beta }:=\int _{-h}^{h}x_{3}~\sigma _{\alpha \beta }~dx_{3}}

а толщина пластины . Величины представляют собой напряжения. 2 h {\displaystyle 2h} σ α β {\displaystyle \sigma _{\alpha \beta }}

Если пластина нагружена внешней распределенной нагрузкой , которая нормальна к срединной поверхности и направлена ​​в положительном направлении, то принцип виртуальной работы приводит к уравнениям равновесия q ( x ) {\displaystyle q(x)} x 3 {\displaystyle x_{3}}

N α β , α = 0 M α β , α β q = 0 {\displaystyle {\begin{aligned}N_{\alpha \beta ,\alpha }&=0\\M_{\alpha \beta ,\alpha \beta }-q&=0\end{aligned}}}

Для умеренных вращений соотношения деформации и смещения принимают форму фон Кармана, а уравнения равновесия можно выразить как

N α β , α = 0 M α β , α β + [ N α β   w , β 0 ] , α q = 0 {\displaystyle {\begin{aligned}N_{\alpha \beta ,\alpha }&=0\\M_{\alpha \beta ,\alpha \beta }+[N_{\alpha \beta }~w_{,\beta }^{0}]_{,\alpha }-q&=0\end{aligned}}}

Граничные условия

Граничные условия, необходимые для решения уравнений равновесия теории пластин, можно получить из граничных условий в принципе виртуальной работы.

Для малых деформаций и малых вращений граничные условия имеют вид

n α   N α β o r u β 0 n α   M α β , β o r w 0 n β   M α β o r w , α 0 {\displaystyle {\begin{aligned}n_{\alpha }~N_{\alpha \beta }&\quad \mathrm {or} \quad u_{\beta }^{0}\\n_{\alpha }~M_{\alpha \beta ,\beta }&\quad \mathrm {or} \quad w^{0}\\n_{\beta }~M_{\alpha \beta }&\quad \mathrm {or} \quad w_{,\alpha }^{0}\end{aligned}}}

Обратите внимание, что величина представляет собой эффективную силу сдвига. n α   M α β , β {\displaystyle n_{\alpha }~M_{\alpha \beta ,\beta }}

Соотношения напряжение-деформация

Соотношения напряжение-деформация для линейно-упругой пластины Кирхгофа определяются выражением

[ σ 11 σ 22 σ 12 ] = [ C 11 C 12 C 13 C 12 C 22 C 23 C 13 C 23 C 33 ] [ ε 11 ε 22 ε 12 ] {\displaystyle {\begin{bmatrix}\sigma _{11}\\\sigma _{22}\\\sigma _{12}\end{bmatrix}}={\begin{bmatrix}C_{11}&C_{12}&C_{13}\\C_{12}&C_{22}&C_{23}\\C_{13}&C_{23}&C_{33}\end{bmatrix}}{\begin{bmatrix}\varepsilon _{11}\\\varepsilon _{22}\\\varepsilon _{12}\end{bmatrix}}}

Поскольку и не фигурируют в уравнениях равновесия, неявно предполагается, что эти величины не оказывают никакого влияния на баланс импульса и ими пренебрегают. σ α 3 {\displaystyle \sigma _{\alpha 3}} σ 33 {\displaystyle \sigma _{33}}

Удобнее работать с результирующими напряжениями и моментами, входящими в уравнения равновесия. Они связаны со смещениями соотношением

[ N 11 N 22 N 12 ] = { h h [ C 11 C 12 C 13 C 12 C 22 C 23 C 13 C 23 C 33 ]   d x 3 } [ u 1 , 1 0 u 2 , 2 0 1 2   ( u 1 , 2 0 + u 2 , 1 0 ) ] {\displaystyle {\begin{bmatrix}N_{11}\\N_{22}\\N_{12}\end{bmatrix}}=\left\{\int _{-h}^{h}{\begin{bmatrix}C_{11}&C_{12}&C_{13}\\C_{12}&C_{22}&C_{23}\\C_{13}&C_{23}&C_{33}\end{bmatrix}}~dx_{3}\right\}{\begin{bmatrix}u_{1,1}^{0}\\u_{2,2}^{0}\\{\frac {1}{2}}~(u_{1,2}^{0}+u_{2,1}^{0})\end{bmatrix}}}

и

[ M 11 M 22 M 12 ] = { h h x 3 2   [ C 11 C 12 C 13 C 12 C 22 C 23 C 13 C 23 C 33 ]   d x 3 } [ w , 11 0 w , 22 0 w , 12 0 ] . {\displaystyle {\begin{bmatrix}M_{11}\\M_{22}\\M_{12}\end{bmatrix}}=-\left\{\int _{-h}^{h}x_{3}^{2}~{\begin{bmatrix}C_{11}&C_{12}&C_{13}\\C_{12}&C_{22}&C_{23}\\C_{13}&C_{23}&C_{33}\end{bmatrix}}~dx_{3}\right\}{\begin{bmatrix}w_{,11}^{0}\\w_{,22}^{0}\\w_{,12}^{0}\end{bmatrix}}\,.}

Жесткости растяжения – это величины

A α β := h h C α β   d x 3 {\displaystyle A_{\alpha \beta }:=\int _{-h}^{h}C_{\alpha \beta }~dx_{3}}

Жесткость на изгиб (также называемая жесткостью на изгиб ) — это величины

D α β := h h x 3 2   C α β   d x 3 {\displaystyle D_{\alpha \beta }:=\int _{-h}^{h}x_{3}^{2}~C_{\alpha \beta }~dx_{3}}

Изотропная и однородная пластина Кирхгофа

Для изотропной и однородной пластины соотношения между напряжением и деформацией имеют вид

[ σ 11 σ 22 σ 12 ] = E 1 ν 2 [ 1 ν 0 ν 1 0 0 0 1 ν ] [ ε 11 ε 22 ε 12 ] . {\displaystyle {\begin{bmatrix}\sigma _{11}\\\sigma _{22}\\\sigma _{12}\end{bmatrix}}={\cfrac {E}{1-\nu ^{2}}}{\begin{bmatrix}1&\nu &0\\\nu &1&0\\0&0&1-\nu \end{bmatrix}}{\begin{bmatrix}\varepsilon _{11}\\\varepsilon _{22}\\\varepsilon _{12}\end{bmatrix}}\,.}

Моменты, соответствующие этим напряжениям, равны

[ M 11 M 22 M 12 ] = 2 h 3 E 3 ( 1 ν 2 )   [ 1 ν 0 ν 1 0 0 0 1 ν ] [ w , 11 0 w , 22 0 w , 12 0 ] {\displaystyle {\begin{bmatrix}M_{11}\\M_{22}\\M_{12}\end{bmatrix}}=-{\cfrac {2h^{3}E}{3(1-\nu ^{2})}}~{\begin{bmatrix}1&\nu &0\\\nu &1&0\\0&0&1-\nu \end{bmatrix}}{\begin{bmatrix}w_{,11}^{0}\\w_{,22}^{0}\\w_{,12}^{0}\end{bmatrix}}}

Чистый изгиб

Смещения и равны нулю в условиях чистого изгиба . Для изотропной однородной пластины при чистом изгибе управляющее уравнение имеет вид u 1 0 {\displaystyle u_{1}^{0}} u 2 0 {\displaystyle u_{2}^{0}}

4 w x 1 4 + 2 4 w x 1 2 x 2 2 + 4 w x 2 4 = 0 where w := w 0 . {\displaystyle {\frac {\partial ^{4}w}{\partial x_{1}^{4}}}+2{\frac {\partial ^{4}w}{\partial x_{1}^{2}\partial x_{2}^{2}}}+{\frac {\partial ^{4}w}{\partial x_{2}^{4}}}=0\quad {\text{where}}\quad w:=w^{0}\,.}

В индексной нотации,

w , 1111 0 + 2   w , 1212 0 + w , 2222 0 = 0 . {\displaystyle w_{,1111}^{0}+2~w_{,1212}^{0}+w_{,2222}^{0}=0\,.}

В прямой тензорной записи основное уравнение имеет вид

2 2 w = 0 . {\displaystyle \nabla ^{2}\nabla ^{2}w=0\,.}

Поперечная нагрузка

Для поперечно нагруженной пластины без осевых деформаций определяющее уравнение имеет вид

4 w x 1 4 + 2 4 w x 1 2 x 2 2 + 4 w x 2 4 = q D {\displaystyle {\frac {\partial ^{4}w}{\partial x_{1}^{4}}}+2{\frac {\partial ^{4}w}{\partial x_{1}^{2}\partial x_{2}^{2}}}+{\frac {\partial ^{4}w}{\partial x_{2}^{4}}}=-{\frac {q}{D}}}

где

D := 2 h 3 E 3 ( 1 ν 2 ) . {\displaystyle D:={\cfrac {2h^{3}E}{3(1-\nu ^{2})}}\,.}

для пластины толщиной . В индексной записи, 2 h {\displaystyle 2h}

w , 1111 0 + 2 w , 1212 0 + w , 2222 0 = q D {\displaystyle w_{,1111}^{0}+2\,w_{,1212}^{0}+w_{,2222}^{0}=-{\frac {q}{D}}}

и в прямой записи

2 2 w = q D . {\displaystyle \nabla ^{2}\nabla ^{2}w=-{\frac {q}{D}}\,.}

В цилиндрических координатах основное уравнение имеет вид ( r , θ , z ) {\displaystyle (r,\theta ,z)}

1 r d d r [ r d d r { 1 r d d r ( r d w d r ) } ] = q D . {\displaystyle {\frac {1}{r}}{\cfrac {d}{dr}}\left[r{\cfrac {d}{dr}}\left\{{\frac {1}{r}}{\cfrac {d}{dr}}\left(r{\cfrac {dw}{dr}}\right)\right\}\right]=-{\frac {q}{D}}\,.}

Ортотропная и однородная пластина Кирхгофа

Для ортотропной пластины

[ C 11 C 12 C 13 C 12 C 22 C 23 C 13 C 23 C 33 ] = 1 1 ν 12 ν 21 [ E 1 ν 12 E 2 0 ν 21 E 1 E 2 0 0 0 2 G 12 ( 1 ν 12 ν 21 ) ] . {\displaystyle {\begin{bmatrix}C_{11}&C_{12}&C_{13}\\C_{12}&C_{22}&C_{23}\\C_{13}&C_{23}&C_{33}\end{bmatrix}}={\cfrac {1}{1-\nu _{12}\nu _{21}}}{\begin{bmatrix}E_{1}&\nu _{12}E_{2}&0\\\nu _{21}E_{1}&E_{2}&0\\0&0&2G_{12}(1-\nu _{12}\nu _{21})\end{bmatrix}}\,.}

Поэтому,

[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] = 2 h 1 ν 12 ν 21 [ E 1 ν 12 E 2 0 ν 21 E 1 E 2 0 0 0 2 G 12 ( 1 ν 12 ν 21 ) ] {\displaystyle {\begin{bmatrix}A_{11}&A_{12}&A_{13}\\A_{21}&A_{22}&A_{23}\\A_{31}&A_{32}&A_{33}\end{bmatrix}}={\cfrac {2h}{1-\nu _{12}\nu _{21}}}{\begin{bmatrix}E_{1}&\nu _{12}E_{2}&0\\\nu _{21}E_{1}&E_{2}&0\\0&0&2G_{12}(1-\nu _{12}\nu _{21})\end{bmatrix}}}

и

[ D 11 D 12 D 13 D 21 D 22 D 23 D 31 D 32 D 33 ] = 2 h 3 3 ( 1 ν 12 ν 21 ) [ E 1 ν 12 E 2 0 ν 21 E 1 E 2 0 0 0 2 G 12 ( 1 ν 12 ν 21 ) ] . {\displaystyle {\begin{bmatrix}D_{11}&D_{12}&D_{13}\\D_{21}&D_{22}&D_{23}\\D_{31}&D_{32}&D_{33}\end{bmatrix}}={\cfrac {2h^{3}}{3(1-\nu _{12}\nu _{21})}}{\begin{bmatrix}E_{1}&\nu _{12}E_{2}&0\\\nu _{21}E_{1}&E_{2}&0\\0&0&2G_{12}(1-\nu _{12}\nu _{21})\end{bmatrix}}\,.}

Поперечная нагрузка

Основное уравнение ортотропной пластины Кирхгофа, нагруженной поперечно распределенной нагрузкой на единицу площади, имеет вид q {\displaystyle q}

D x w , 1111 0 + 2 D x y w , 1122 0 + D y w , 2222 0 = q {\displaystyle D_{x}w_{,1111}^{0}+2D_{xy}w_{,1122}^{0}+D_{y}w_{,2222}^{0}=-q}

где

D x = D 11 = 2 h 3 E 1 3 ( 1 ν 12 ν 21 ) D y = D 22 = 2 h 3 E 2 3 ( 1 ν 12 ν 21 ) D x y = D 33 + 1 2 ( ν 21 D 11 + ν 12 D 22 ) = D 33 + ν 21 D 11 = 4 h 3 G 12 3 + 2 h 3 ν 21 E 1 3 ( 1 ν 12 ν 21 ) . {\displaystyle {\begin{aligned}D_{x}&=D_{11}={\frac {2h^{3}E_{1}}{3(1-\nu _{12}\nu _{21})}}\\D_{y}&=D_{22}={\frac {2h^{3}E_{2}}{3(1-\nu _{12}\nu _{21})}}\\D_{xy}&=D_{33}+{\tfrac {1}{2}}(\nu _{21}D_{11}+\nu _{12}D_{22})=D_{33}+\nu _{21}D_{11}={\frac {4h^{3}G_{12}}{3}}+{\frac {2h^{3}\nu _{21}E_{1}}{3(1-\nu _{12}\nu _{21})}}\,.\end{aligned}}}

Динамика тонких пластин Кирхгофа

Динамическая теория пластин определяет распространение волн в пластинах, а также изучает стоячие волны и формы колебаний.

Управляющие уравнения

Уравнения динамики пластины Кирхгофа–Лява следующие:

N α β , β = J 1   u ¨ α 0 M α β , α β q ( x , t ) = J 1   w ¨ 0 J 3   w ¨ , α α 0 {\displaystyle {\begin{aligned}N_{\alpha \beta ,\beta }&=J_{1}~{\ddot {u}}_{\alpha }^{0}\\M_{\alpha \beta ,\alpha \beta }-q(x,t)&=J_{1}~{\ddot {w}}^{0}-J_{3}~{\ddot {w}}_{,\alpha \alpha }^{0}\end{aligned}}}

где, для пластины с плотностью , ρ = ρ ( x ) {\displaystyle \rho =\rho (x)}

J 1 := h h ρ   d x 3 = 2   ρ   h   ;     J 3 := h h x 3 2   ρ   d x 3 = 2 3   ρ   h 3 {\displaystyle J_{1}:=\int _{-h}^{h}\rho ~dx_{3}=2~\rho ~h~;~~J_{3}:=\int _{-h}^{h}x_{3}^{2}~\rho ~dx_{3}={\frac {2}{3}}~\rho ~h^{3}}

и

u ˙ i = u i t   ;     u ¨ i = 2 u i t 2   ;     u i , α = u i x α   ;     u i , α β = 2 u i x α x β {\displaystyle {\dot {u}}_{i}={\frac {\partial u_{i}}{\partial t}}~;~~{\ddot {u}}_{i}={\frac {\partial ^{2}u_{i}}{\partial t^{2}}}~;~~u_{i,\alpha }={\frac {\partial u_{i}}{\partial x_{\alpha }}}~;~~u_{i,\alpha \beta }={\frac {\partial ^{2}u_{i}}{\partial x_{\alpha }\partial x_{\beta }}}}

На рисунках ниже показаны некоторые моды колебаний круглой пластины.

Изотропные пластины

Управляющие уравнения значительно упрощаются для изотропных и однородных пластин, для которых деформациями в плоскости можно пренебречь, и имеют вид

D ( 4 w 0 x 1 4 + 2 4 w 0 x 1 2 x 2 2 + 4 w 0 x 2 4 ) = q ( x 1 , x 2 , t ) 2 ρ h 2 w 0 t 2 . {\displaystyle D\,\left({\frac {\partial ^{4}w^{0}}{\partial x_{1}^{4}}}+2{\frac {\partial ^{4}w^{0}}{\partial x_{1}^{2}\partial x_{2}^{2}}}+{\frac {\partial ^{4}w^{0}}{\partial x_{2}^{4}}}\right)=-q(x_{1},x_{2},t)-2\rho h\,{\frac {\partial ^{2}w^{0}}{\partial t^{2}}}\,.}

где - изгибная жесткость пластины. Для однородной пластины толщиной , D {\displaystyle D} 2 h {\displaystyle 2h}

D := 2 h 3 E 3 ( 1 ν 2 ) . {\displaystyle D:={\cfrac {2h^{3}E}{3(1-\nu ^{2})}}\,.}

В прямой записи

D 2 2 w 0 = q ( x , y , t ) 2 ρ h w ¨ 0 . {\displaystyle D\,\nabla ^{2}\nabla ^{2}w^{0}=-q(x,y,t)-2\rho h\,{\ddot {w}}^{0}\,.}

Теория Уфлянда-Миндлина для толстых пластин

В теории толстых пластин, или теории Якова С. Уфлянда [4] (см., для подробностей, справочник Элишакова [ 5] ), Раймонда Миндлина [6] и Эрика Рейсснера , нормаль к срединной поверхности остается прямой, но не обязательно перпендикулярной срединной поверхности. Если и обозначают углы, которые срединная поверхность образует с осью , то φ 1 {\displaystyle \varphi _{1}} φ 2 {\displaystyle \varphi _{2}} x 3 {\displaystyle x_{3}}

φ 1 w , 1   ;     φ 2 w , 2 {\displaystyle \varphi _{1}\neq w_{,1}~;~~\varphi _{2}\neq w_{,2}}

Тогда гипотеза Миндлина–Рейсснера подразумевает, что

u α ( x ) = u α 0 ( x 1 , x 2 ) x 3   φ α   ;     α = 1 , 2 u 3 ( x ) = w 0 ( x 1 , x 2 ) {\displaystyle {\begin{aligned}u_{\alpha }(\mathbf {x} )&=u_{\alpha }^{0}(x_{1},x_{2})-x_{3}~\varphi _{\alpha }~;~~\alpha =1,2\\u_{3}(\mathbf {x} )&=w^{0}(x_{1},x_{2})\end{aligned}}}

Соотношения деформации и смещения

В зависимости от величины поворота нормалей пластины из основных кинематических предположений можно вывести два различных приближения для деформаций.

Для малых деформаций и малых поворотов соотношения деформации и смещения для пластин Миндлина–Рейсснера имеют вид

ε α β = 1 2 ( u α , β 0 + u β , α 0 ) x 3 2   ( φ α , β + φ β , α ) ε α 3 = 1 2 ( w , α 0 φ α ) ε 33 = 0 {\displaystyle {\begin{aligned}\varepsilon _{\alpha \beta }&={\frac {1}{2}}(u_{\alpha ,\beta }^{0}+u_{\beta ,\alpha }^{0})-{\frac {x_{3}}{2}}~(\varphi _{\alpha ,\beta }+\varphi _{\beta ,\alpha })\\\varepsilon _{\alpha 3}&={\cfrac {1}{2}}\left(w_{,\alpha }^{0}-\varphi _{\alpha }\right)\\\varepsilon _{33}&=0\end{aligned}}}

Сдвиговая деформация, а следовательно, и сдвиговое напряжение , по толщине пластины не игнорируются в этой теории. Однако сдвиговая деформация постоянна по толщине пластины. Это не может быть точным, поскольку известно, что сдвиговое напряжение является параболическим даже для простых геометрий пластины. Чтобы учесть неточность сдвиговой деформации, применяется поправочный коэффициент сдвига ( ), так что теория предсказывает правильное количество внутренней энергии. Тогда κ {\displaystyle \kappa }

ε α 3 = 1 2   κ   ( w , α 0 φ α ) {\displaystyle \varepsilon _{\alpha 3}={\cfrac {1}{2}}~\kappa ~\left(w_{,\alpha }^{0}-\varphi _{\alpha }\right)}

Уравнения равновесия

Уравнения равновесия имеют несколько разные формы в зависимости от величины изгиба, ожидаемого в пластине. Для ситуации, когда деформации и повороты пластины малы, уравнения равновесия для пластины Миндлина–Рейсснера имеют вид

N α β , α = 0 M α β , β Q α = 0 Q α , α + q = 0 . {\displaystyle {\begin{aligned}&N_{\alpha \beta ,\alpha }=0\\&M_{\alpha \beta ,\beta }-Q_{\alpha }=0\\&Q_{\alpha ,\alpha }+q=0\,.\end{aligned}}}

Результирующие сдвигающие силы в приведенных выше уравнениях определяются как

Q α := κ   h h σ α 3   d x 3 . {\displaystyle Q_{\alpha }:=\kappa ~\int _{-h}^{h}\sigma _{\alpha 3}~dx_{3}\,.}

Граничные условия

Граничные условия обозначены граничными терминами в принципе виртуальной работы.

Если единственной внешней силой является вертикальная сила на верхней поверхности пластины, граничные условия имеют вид

n α   N α β o r u β 0 n α   M α β o r φ α n α   Q α o r w 0 {\displaystyle {\begin{aligned}n_{\alpha }~N_{\alpha \beta }&\quad \mathrm {or} \quad u_{\beta }^{0}\\n_{\alpha }~M_{\alpha \beta }&\quad \mathrm {or} \quad \varphi _{\alpha }\\n_{\alpha }~Q_{\alpha }&\quad \mathrm {or} \quad w^{0}\end{aligned}}}

Учредительные отношения

Соотношения напряжение-деформация для линейно-упругой пластины Миндлина-Рейсснера определяются выражением

σ α β = C α β γ θ   ε γ θ σ α 3 = C α 3 γ θ   ε γ θ σ 33 = C 33 γ θ   ε γ θ {\displaystyle {\begin{aligned}\sigma _{\alpha \beta }&=C_{\alpha \beta \gamma \theta }~\varepsilon _{\gamma \theta }\\\sigma _{\alpha 3}&=C_{\alpha 3\gamma \theta }~\varepsilon _{\gamma \theta }\\\sigma _{33}&=C_{33\gamma \theta }~\varepsilon _{\gamma \theta }\end{aligned}}}

Поскольку не появляется в уравнениях равновесия, неявно предполагается, что он не оказывает никакого влияния на баланс импульса и им пренебрегают. Это предположение также называется предположением о плоском напряжении . Оставшиеся соотношения напряжение-деформация для ортотропного материала в матричной форме можно записать как σ 33 {\displaystyle \sigma _{33}}

[ σ 11 σ 22 σ 23 σ 31 σ 12 ] = [ C 11 C 12 0 0 0 C 12 C 22 0 0 0 0 0 C 44 0 0 0 0 0 C 55 0 0 0 0 0 C 66 ] [ ε 11 ε 22 ε 23 ε 31 ε 12 ] {\displaystyle {\begin{bmatrix}\sigma _{11}\\\sigma _{22}\\\sigma _{23}\\\sigma _{31}\\\sigma _{12}\end{bmatrix}}={\begin{bmatrix}C_{11}&C_{12}&0&0&0\\C_{12}&C_{22}&0&0&0\\0&0&C_{44}&0&0\\0&0&0&C_{55}&0\\0&0&0&0&C_{66}\end{bmatrix}}{\begin{bmatrix}\varepsilon _{11}\\\varepsilon _{22}\\\varepsilon _{23}\\\varepsilon _{31}\\\varepsilon _{12}\end{bmatrix}}}

Затем,

[ N 11 N 22 N 12 ] = { h h [ C 11 C 12 0 C 12 C 22 0 0 0 C 66 ]   d x 3 } [ u 1 , 1 0 u 2 , 2 0 1 2   ( u 1 , 2 0 + u 2 , 1 0 ) ] {\displaystyle {\begin{bmatrix}N_{11}\\N_{22}\\N_{12}\end{bmatrix}}=\left\{\int _{-h}^{h}{\begin{bmatrix}C_{11}&C_{12}&0\\C_{12}&C_{22}&0\\0&0&C_{66}\end{bmatrix}}~dx_{3}\right\}{\begin{bmatrix}u_{1,1}^{0}\\u_{2,2}^{0}\\{\frac {1}{2}}~(u_{1,2}^{0}+u_{2,1}^{0})\end{bmatrix}}}

и

[ M 11 M 22 M 12 ] = { h h x 3 2   [ C 11 C 12 0 C 12 C 22 0 0 0 C 66 ]   d x 3 } [ φ 1 , 1 φ 2 , 2 1 2   ( φ 1 , 2 + φ 2 , 1 ) ] {\displaystyle {\begin{bmatrix}M_{11}\\M_{22}\\M_{12}\end{bmatrix}}=-\left\{\int _{-h}^{h}x_{3}^{2}~{\begin{bmatrix}C_{11}&C_{12}&0\\C_{12}&C_{22}&0\\0&0&C_{66}\end{bmatrix}}~dx_{3}\right\}{\begin{bmatrix}\varphi _{1,1}\\\varphi _{2,2}\\{\frac {1}{2}}~(\varphi _{1,2}+\varphi _{2,1})\end{bmatrix}}}

Для условий сдвига

[ Q 1 Q 2 ] = κ 2 { h h [ C 55 0 0 C 44 ]   d x 3 } [ w , 1 0 φ 1 w , 2 0 φ 2 ] {\displaystyle {\begin{bmatrix}Q_{1}\\Q_{2}\end{bmatrix}}={\cfrac {\kappa }{2}}\left\{\int _{-h}^{h}{\begin{bmatrix}C_{55}&0\\0&C_{44}\end{bmatrix}}~dx_{3}\right\}{\begin{bmatrix}w_{,1}^{0}-\varphi _{1}\\w_{,2}^{0}-\varphi _{2}\end{bmatrix}}}

Жесткости растяжения – это величины

A α β := h h C α β   d x 3 {\displaystyle A_{\alpha \beta }:=\int _{-h}^{h}C_{\alpha \beta }~dx_{3}}

Жесткости изгиба – это величины

D α β := h h x 3 2   C α β   d x 3 {\displaystyle D_{\alpha \beta }:=\int _{-h}^{h}x_{3}^{2}~C_{\alpha \beta }~dx_{3}}

Изотропные и однородные пластины Уфлянда-Миндлина

Для равномерно толстых, однородных и изотропных пластин соотношения между напряжением и деформацией в плоскости пластины имеют вид

[ σ 11 σ 22 σ 12 ] = E 1 ν 2 [ 1 ν 0 ν 1 0 0 0 1 ν ] [ ε 11 ε 22 ε 12 ] . {\displaystyle {\begin{bmatrix}\sigma _{11}\\\sigma _{22}\\\sigma _{12}\end{bmatrix}}={\cfrac {E}{1-\nu ^{2}}}{\begin{bmatrix}1&\nu &0\\\nu &1&0\\0&0&1-\nu \end{bmatrix}}{\begin{bmatrix}\varepsilon _{11}\\\varepsilon _{22}\\\varepsilon _{12}\end{bmatrix}}\,.}

где - модуль Юнга, - коэффициент Пуассона, - деформации в плоскости. Сдвиговые напряжения и деформации по толщине связаны соотношением E {\displaystyle E} ν {\displaystyle \nu } ε α β {\displaystyle \varepsilon _{\alpha \beta }}

σ 31 = 2 G ε 31 and σ 32 = 2 G ε 32 {\displaystyle \sigma _{31}=2G\varepsilon _{31}\quad {\text{and}}\quad \sigma _{32}=2G\varepsilon _{32}}

где - модуль сдвига . G = E / ( 2 ( 1 + ν ) ) {\displaystyle G=E/(2(1+\nu ))}

Учредительные отношения

Соотношения между результирующими напряжениями и обобщенными смещениями для изотропной пластины Миндлина–Рейсснера следующие:

[ N 11 N 22 N 12 ] = 2 E h 1 ν 2 [ 1 ν 0 ν 1 0 0 0 1 ν ] [ u 1 , 1 0 u 2 , 2 0 1 2   ( u 1 , 2 0 + u 2 , 1 0 ) ] , {\displaystyle {\begin{bmatrix}N_{11}\\N_{22}\\N_{12}\end{bmatrix}}={\cfrac {2Eh}{1-\nu ^{2}}}{\begin{bmatrix}1&\nu &0\\\nu &1&0\\0&0&1-\nu \end{bmatrix}}{\begin{bmatrix}u_{1,1}^{0}\\u_{2,2}^{0}\\{\frac {1}{2}}~(u_{1,2}^{0}+u_{2,1}^{0})\end{bmatrix}}\,,}
[ M 11 M 22 M 12 ] = 2 E h 3 3 ( 1 ν 2 ) [ 1 ν 0 ν 1 0 0 0 1 ν ] [ φ 1 , 1 φ 2 , 2 1 2 ( φ 1 , 2 + φ 2 , 1 ) ] , {\displaystyle {\begin{bmatrix}M_{11}\\M_{22}\\M_{12}\end{bmatrix}}=-{\cfrac {2Eh^{3}}{3(1-\nu ^{2})}}{\begin{bmatrix}1&\nu &0\\\nu &1&0\\0&0&1-\nu \end{bmatrix}}{\begin{bmatrix}\varphi _{1,1}\\\varphi _{2,2}\\{\frac {1}{2}}(\varphi _{1,2}+\varphi _{2,1})\end{bmatrix}}\,,}

и

[ Q 1 Q 2 ] = κ G h [ w , 1 0 φ 1 w , 2 0 φ 2 ] . {\displaystyle {\begin{bmatrix}Q_{1}\\Q_{2}\end{bmatrix}}=\kappa Gh{\begin{bmatrix}w_{,1}^{0}-\varphi _{1}\\w_{,2}^{0}-\varphi _{2}\end{bmatrix}}\,.}

Жесткость на изгиб определяется как величина

D = 2 E h 3 3 ( 1 ν 2 ) . {\displaystyle D={\cfrac {2Eh^{3}}{3(1-\nu ^{2})}}\,.}

Для пластины толщиной жесткость на изгиб имеет вид H {\displaystyle H}

D = E H 3 12 ( 1 ν 2 ) . {\displaystyle D={\cfrac {EH^{3}}{12(1-\nu ^{2})}}\,.}

где h = H 2 {\displaystyle h={\frac {H}{2}}}

Управляющие уравнения

Если игнорировать расширение пластины в плоскости, то основные уравнения будут такими:

M α β , β Q α = 0 Q α , α + q = 0 . {\displaystyle {\begin{aligned}M_{\alpha \beta ,\beta }-Q_{\alpha }&=0\\Q_{\alpha ,\alpha }+q&=0\,.\end{aligned}}}

В терминах обобщенных деформаций три основных уравнения имеют вид w 0 , φ 1 , φ 2 {\displaystyle w^{0},\varphi _{1},\varphi _{2}}

2 ( φ 1 x 1 + φ 2 x 2 ) = q D 2 w 0 φ 1 x 1 φ 2 x 2 = q κ G h 2 ( φ 1 x 2 φ 2 x 1 ) = 2 κ G h D ( 1 ν ) ( φ 1 x 2 φ 2 x 1 ) . {\displaystyle {\begin{aligned}&\nabla ^{2}\left({\frac {\partial \varphi _{1}}{\partial x_{1}}}+{\frac {\partial \varphi _{2}}{\partial x_{2}}}\right)=-{\frac {q}{D}}\\&\nabla ^{2}w^{0}-{\frac {\partial \varphi _{1}}{\partial x_{1}}}-{\frac {\partial \varphi _{2}}{\partial x_{2}}}=-{\frac {q}{\kappa Gh}}\\&\nabla ^{2}\left({\frac {\partial \varphi _{1}}{\partial x_{2}}}-{\frac {\partial \varphi _{2}}{\partial x_{1}}}\right)=-{\frac {2\kappa Gh}{D(1-\nu )}}\left({\frac {\partial \varphi _{1}}{\partial x_{2}}}-{\frac {\partial \varphi _{2}}{\partial x_{1}}}\right)\,.\end{aligned}}}

Граничные условия по краям прямоугольной пластины имеют вид

simply supported w 0 = 0 , M 11 = 0   ( or   M 22 = 0 ) , φ 1 = 0   ( or   φ 2 = 0 ) clamped w 0 = 0 , φ 1 = 0 , φ 2 = 0 . {\displaystyle {\begin{aligned}{\text{simply supported}}\quad &\quad w^{0}=0,M_{11}=0~({\text{or}}~M_{22}=0),\varphi _{1}=0~({\text{or}}~\varphi _{2}=0)\\{\text{clamped}}\quad &\quad w^{0}=0,\varphi _{1}=0,\varphi _{2}=0\,.\end{aligned}}}

Статическая теория Рейсснера–Штейна для изотропных консольных пластин

В общем, точные решения для консольных пластин с использованием теории пластин довольно сложны, и в литературе можно найти лишь несколько точных решений. Рейсснер и Штейн [7] предлагают упрощенную теорию для консольных пластин, которая является улучшением по сравнению со старыми теориями, такими как теория пластин Сен-Венана.

Теория Рейсснера-Штейна предполагает поперечное поле смещения в виде

w ( x , y ) = w x ( x ) + y θ x ( x ) . {\displaystyle w(x,y)=w_{x}(x)+y\,\theta _{x}(x)\,.}

Управляющие уравнения для пластины затем сводятся к двум связанным обыкновенным дифференциальным уравнениям:

b D d 4 w x d x 4 = q 1 ( x ) n 1 ( x ) d 2 w x d x 2 d n 1 d x d w x d x 1 2 d n 2 d x d θ x d x n 2 ( x ) 2 d 2 θ x d x 2 b 3 D 12 d 4 θ x d x 4 2 b D ( 1 ν ) d 2 θ x d x 2 = q 2 ( x ) n 3 ( x ) d 2 θ x d x 2 d n 3 d x d θ x d x n 2 ( x ) 2 d 2 w x d x 2 1 2 d n 2 d x d w x d x {\displaystyle {\begin{aligned}&bD{\frac {\mathrm {d} ^{4}w_{x}}{\mathrm {d} x^{4}}}=q_{1}(x)-n_{1}(x){\cfrac {d^{2}w_{x}}{dx^{2}}}-{\cfrac {dn_{1}}{dx}}\,{\cfrac {dw_{x}}{dx}}-{\frac {1}{2}}{\cfrac {dn_{2}}{dx}}\,{\cfrac {d\theta _{x}}{dx}}-{\frac {n_{2}(x)}{2}}{\cfrac {d^{2}\theta _{x}}{dx^{2}}}\\&{\frac {b^{3}D}{12}}\,{\frac {\mathrm {d} ^{4}\theta _{x}}{\mathrm {d} x^{4}}}-2bD(1-\nu ){\cfrac {d^{2}\theta _{x}}{dx^{2}}}=q_{2}(x)-n_{3}(x){\cfrac {d^{2}\theta _{x}}{dx^{2}}}-{\cfrac {dn_{3}}{dx}}\,{\cfrac {d\theta _{x}}{dx}}-{\frac {n_{2}(x)}{2}}\,{\cfrac {d^{2}w_{x}}{dx^{2}}}-{\frac {1}{2}}{\cfrac {dn_{2}}{dx}}\,{\cfrac {dw_{x}}{dx}}\end{aligned}}}

где

q 1 ( x ) = b / 2 b / 2 q ( x , y ) d y   ,     q 2 ( x ) = b / 2 b / 2 y q ( x , y ) d y   ,     n 1 ( x ) = b / 2 b / 2 n x ( x , y ) d y n 2 ( x ) = b / 2 b / 2 y n x ( x , y ) d y   ,     n 3 ( x ) = b / 2 b / 2 y 2 n x ( x , y ) d y . {\displaystyle {\begin{aligned}q_{1}(x)&=\int _{-b/2}^{b/2}q(x,y)\,{\text{d}}y~,~~q_{2}(x)=\int _{-b/2}^{b/2}y\,q(x,y)\,{\text{d}}y~,~~n_{1}(x)=\int _{-b/2}^{b/2}n_{x}(x,y)\,{\text{d}}y\\n_{2}(x)&=\int _{-b/2}^{b/2}y\,n_{x}(x,y)\,{\text{d}}y~,~~n_{3}(x)=\int _{-b/2}^{b/2}y^{2}\,n_{x}(x,y)\,{\text{d}}y\,.\end{aligned}}}

При , поскольку балка защемлена, граничные условия имеют вид x = 0 {\displaystyle x=0}

w ( 0 , y ) = d w d x | x = 0 = 0 w x ( 0 ) = d w x d x | x = 0 = θ x ( 0 ) = d θ x d x | x = 0 = 0 . {\displaystyle w(0,y)={\cfrac {dw}{dx}}{\Bigr |}_{x=0}=0\qquad \implies \qquad w_{x}(0)={\cfrac {dw_{x}}{dx}}{\Bigr |}_{x=0}=\theta _{x}(0)={\cfrac {d\theta _{x}}{dx}}{\Bigr |}_{x=0}=0\,.}

Граничные условия при этом следующие: x = a {\displaystyle x=a}

b D d 3 w x d x 3 + n 1 ( x ) d w x d x + n 2 ( x ) d θ x d x + q x 1 = 0 b 3 D 12 d 3 θ x d x 3 + [ n 3 ( x ) 2 b D ( 1 ν ) ] d θ x d x + n 2 ( x ) d w x d x + t = 0 b D d 2 w x d x 2 + m 1 = 0 , b 3 D 12 d 2 θ x d x 2 + m 2 = 0 {\displaystyle {\begin{aligned}&bD{\cfrac {d^{3}w_{x}}{dx^{3}}}+n_{1}(x){\cfrac {dw_{x}}{dx}}+n_{2}(x){\cfrac {d\theta _{x}}{dx}}+q_{x1}=0\\&{\frac {b^{3}D}{12}}{\cfrac {d^{3}\theta _{x}}{dx^{3}}}+\left[n_{3}(x)-2bD(1-\nu )\right]{\cfrac {d\theta _{x}}{dx}}+n_{2}(x){\cfrac {dw_{x}}{dx}}+t=0\\&bD{\cfrac {d^{2}w_{x}}{dx^{2}}}+m_{1}=0\quad ,\quad {\frac {b^{3}D}{12}}{\cfrac {d^{2}\theta _{x}}{dx^{2}}}+m_{2}=0\end{aligned}}}

где

m 1 = b / 2 b / 2 m x ( y ) d y   ,     m 2 = b / 2 b / 2 y m x ( y ) d y   ,     q x 1 = b / 2 b / 2 q x ( y ) d y t = q x 2 + m 3 = b / 2 b / 2 y q x ( y ) d y + b / 2 b / 2 m x y ( y ) d y . {\displaystyle {\begin{aligned}m_{1}&=\int _{-b/2}^{b/2}m_{x}(y)\,{\text{d}}y~,~~m_{2}=\int _{-b/2}^{b/2}y\,m_{x}(y)\,{\text{d}}y~,~~q_{x1}=\int _{-b/2}^{b/2}q_{x}(y)\,{\text{d}}y\\t&=q_{x2}+m_{3}=\int _{-b/2}^{b/2}y\,q_{x}(y)\,{\text{d}}y+\int _{-b/2}^{b/2}m_{xy}(y)\,{\text{d}}y\,.\end{aligned}}}

Смотрите также

Ссылки

  1. ^ Тимошенко, С. и Войновски-Кригер, С. «Теория пластин и оболочек». McGraw–Hill New York, 1959.
  2. AEH Love, О малых свободных колебаниях и деформациях упругих оболочек , Философский перевод Королевского общества (Лондон), 1888, том série A, № 17, стр. 491–549.
  3. ^ Редди, Дж. Н., 2007, Теория и анализ упругих пластин и оболочек , CRC Press, Тейлор и Фрэнсис.
  4. ^ Уфлянд, Я. С., 1948, Распространение волн при поперечных колебаниях балок и пластин, ПММ: Журнал прикладной математики и механики, т. 12, 287-300.
  5. ^ Элишаков, И., 2020, Справочник по теориям балок Тимошенко-Эренфеста и пластин Уфлянда-Миндлина , World Scientific, Сингапур, ISBN  978-981-3236-51-6
  6. ^ Р. Д. Миндлин, Влияние вращательной инерции и сдвига на изгибные движения изотропных упругих пластин , Журнал прикладной механики, 1951, т. 18, стр. 31–38.
  7. ^ Э. Рейсснер и М. Штейн. Кручение и поперечный изгиб консольных пластин. Техническая записка 2369, Национальный консультативный комитет по аэронавтике, Вашингтон, 1951.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Plate_theory&oldid=1221549314"