Существует похожая конструкция, называемая башней Уайтхеда (определена ниже), где вместо пространств с гомотопическим типом для степеней эти пространства имеют нулевые гомотопические группы для для .
Определение
Система Постникова линейно связного пространства является обратной системой пространств
с последовательностью карт, совместимых с обратной системой, такой что
Первые два условия подразумевают, что также является -пространством. В более общем смысле, если является -связным, то является -пространством и все для являются стягиваемыми . Обратите внимание, что третье условие включается только факультативно некоторыми авторами.
показывая, что является CW-приближением его обратного предела. Они могут быть построены на CW-комплексе путем итеративного уничтожения гомотопических групп. Если у нас есть отображение, представляющее гомотопический класс , мы можем выполнить выталкивание вдоль граничного отображения , убивая гомотопический класс. Для этот процесс может быть повторен для всех , давая пространство, которое имеет исчезающие гомотопические группы . Используя тот факт, что может быть построено из путем уничтожения всех гомотопических отображений , мы получаем отображение .
Основная собственность
Одним из основных свойств башни Постникова, делающим ее столь эффективной для изучения при вычислении когомологий, является тот факт, что пространства гомотопны комплексу CW , который отличается от только ячейками размерности .
Гомотопическая классификация расслоений
Последовательность расслоений [2] имеет гомотопически определенные инварианты, то есть гомотопические классы отображений , дают хорошо определенный гомотопический тип . Гомотопический класс получается из рассмотрения гомотопического класса классифицирующей карты для волокна . Соответствующая классифицирующая карта — это
,
следовательно, гомотопический класс классифицируется гомотопическим классом
называемый n- м инвариантом Постникова для , поскольку гомотопические классы отображений в пространства Эйленберга-Маклейна дают когомологии с коэффициентами в ассоциированной абелевой группе.
Последовательность волокон для пространств с двумя нетривиальными гомотопическими группами
Одним из частных случаев гомотопической классификации является гомотопический класс пространств, для которых существует расслоение
давая гомотопический тип с двумя нетривиальными гомотопическими группами, и . Тогда, из предыдущего обсуждения, отображение расслоения дает класс когомологий в
Одним из концептуально простейших случаев башни Постникова является случай пространства Эйленберга–Маклейна . Это дает башню с
Постникова башняС2
Башня Постникова для сферы — это особый случай, первые несколько членов которого можно понять явно. Поскольку у нас есть первые несколько гомотопических групп из односвязности , теории степеней сфер и расслоения Хопфа, что дает для , следовательно
Затем, и происходит из последовательности отката
который является элементом в
.
Если бы это было тривиально, то это подразумевало бы . Но это не так! Фактически, это отвечает за то, почему строгие бесконечные группоиды не моделируют гомотопические типы. [3] Вычисление этого инварианта требует больше работы, но может быть явно найдено. [4] Это квадратичная форма , полученная из расслоения Хопфа . Обратите внимание, что каждый элемент в дает другой гомотопический 3-тип.
Затем мы можем сформировать гомологическую спектральную последовательность с -термами
.
И первое нетривиальное отображение в ,
,
эквивалентно записано как
.
Если легко вычислить и , то мы можем получить информацию о том, как выглядит эта карта. В частности, если это изоморфизм, мы получаем вычисление . Для случая это можно вычислить явно, используя расслоение путей для , основное свойство башни Постникова для (давая , и теорему об универсальном коэффициенте , дающую . Более того, из-за теоремы Фрейденталя о подвеске это фактически дает стабильную гомотопическую группу, поскольку стабильна для .
Обратите внимание, что аналогичные методы можно применить с использованием башни Уайтхеда (ниже) для вычисления и , что даст первые две нетривиальные стабильные гомотопические группы сфер.
Для спектра башня Постникова представляет собой диаграмму в гомотопической категории спектров, заданную формулой
,
с картами
коммутируя с картами. Тогда эта башня является башней Постникова, если выполняются следующие два условия:
для ,
является изоморфизмом для ,
где — стабильные гомотопические группы спектра. Оказывается, у каждого спектра есть башня Постникова, и эту башню можно построить с помощью индуктивной процедуры, похожей на ту, что приведена выше.
Башня Уайтхед
При наличии комплекса CW существует дуальная конструкция к башне Постникова, называемая башней Уайтхеда . Вместо того, чтобы убивать все высшие гомотопические группы, башня Уайтхеда итеративно убивает низшие гомотопические группы. Это дается башней комплексов CW,
,
где
Нижние гомотопические группы равны нулю, поэтому для .
Индуцированное отображение является изоморфизмом для .
Карты представляют собой расслоения с волокнами .
Подразумеваемое
Обратите внимание , что это универсальное покрытие , поскольку это покрывающее пространство с односвязным покрытием. Кроме того, каждое является универсально -связным покрытием .
Строительство
Пространства в башне Уайтхеда строятся индуктивно. Если мы построим a, убивая высшие гомотопические группы в , [7] мы получим вложение . Если мы позволим
для некоторой фиксированной базовой точки , то индуцированное отображение является расслоением со слоем, гомеоморфным
,
и поэтому у нас есть расслоение Серра
.
Используя длинную точную последовательность в теории гомотопий, мы имеем, что для , для , и, наконец, существует точная последовательность
,
где если средний морфизм является изоморфизмом, то другие две группы равны нулю. Это можно проверить, посмотрев на включение и заметив, что пространство Эйленберга–Маклана имеет клеточное разложение
; таким образом,
,
дающий желаемый результат.
Как гомотопическое волокно
Другой способ рассматривать компоненты в башне Уайтхеда — как гомотопическое волокно . Если мы возьмем
от башни Постникова мы получаем пространство, которое имеет
Башня спектров Уайтхеда
Двойственное понятие башни Уайтхеда можно определить аналогичным образом, используя гомотопические волокна в категории спектров. Если мы допустим
то это можно организовать в башню, дающую связные покрытия спектра. Это широко используемая конструкция [8] [9] [10] в теории бордизмов , потому что покрытия неориентированного спектра кобордизмов дают другие теории бордизмов [10]
В геометрии Spin группа строится как универсальное покрытие Специальной ортогональной группы , так же как и расслоение, дающее первый член в башне Уайтхеда. Существуют физически релевантные интерпретации для более высоких частей в этой башне, которые можно прочитать как
^ ab Хэтчер, Аллен . Алгебраическая топология (PDF) .
^ Кан, Дональд В. (1963-03-01). "Индуцированные отображения для систем Постникова" (PDF) . Труды Американского математического общества . 107 (3): 432–450. doi : 10.1090/s0002-9947-1963-0150777-x . ISSN 0002-9947.
^ Laurențiu-George, Maxim. "Спектральные последовательности и гомотопические группы сфер" (PDF) . Архивировано (PDF) из оригинала 19 мая 2017 г.
^ О спектрах Тома, ориентируемости и кобордизмах. Springer Monographs in Mathematics. Берлин, Гейдельберг: Springer . 1998. doi :10.1007/978-3-540-77751-9. ISBN978-3-540-62043-3.
^ Максим, Лауренциу. «Конспект лекций по теории гомотопий и ее приложениям» (PDF) . стр. 66. Архивировано (PDF) из оригинала 16 февраля 2020 г.
^ Хилл, Майкл А. (2009). «Струнный бордизм BE8 и BE8 × BE8 через размерность 14». Illinois Journal of Mathematics . 53 (1): 183–196. doi : 10.1215/ijm/1264170845 . ISSN 0019-2082.
^ Бунке, Ульрих; Науманн, Нико (2014-12-01). «Вторичные инварианты для струнных бордизмов и топологических модулярных форм». Bulletin des Sciences Mathématiques . 138 (8): 912–970. doi : 10.1016/j.bulsci.2014.05.002 . ISSN 0007-4497.
^ ab Szymik, Markus (2019). «Струнный бордизм и хроматические характеристики». В Daniel G. Davis; Hans-Werner Henn; JF Jardine; Mark W. Johnson; Charles Rezk (ред.). Теория гомотопий: инструменты и приложения . Contemporary Mathematics. Т. 729. С. 239–254. arXiv : 1312.4658 . doi :10.1090/conm/729/14698. ISBN9781470442446. S2CID 56461325.
^ "Математическая физика – Физическое применение башни Постникова, String(n) и Fivebrane(n)". Physics Stack Exchange . Получено 2020-02-16 .
^ "at.algebraic topology – Какое отношение башни Уайтхеда имеют к физике?". MathOverflow . Получено 2020-02-16 .
Чжан. "Башни Постникова, башни Уайтхеда и их приложения (рукописные заметки)" (PDF) . www.math.purdue.edu . Архивировано из оригинала (PDF) 2020-02-13.