Клаус Вильгельм Роггенкамп

Немецкий математик (1940–2021)

Клаус Вильгельм Роггенкамп (24 декабря 1940 — 23 июля 2021 [1] ) — немецкий математик, специализировавшийся на алгебре.

Образование и карьера

Будучи студентом, Роггенкамп изучал математику с 1960 по 1964 год в Гиссенском университете . [2] Там в 1967 году он получил степень доктора философии. Его диссертация Darstellungen endlicher Gruppen in Polynombereichen (Представления конечных групп в полиномиальных областях целочисленности ) была написана под руководством Германа Бёрнера . [3] В качестве постдока Роггенкамп работал в Иллинойсском университете в Урбане-Шампейне , где учился у Ирвинга Райнера , и в Монреальском университете . После четырёх лет работы профессором в Билефельдском университете он был назначен на кафедру алгебры в Штутгартском университете . [2]

Роггенкамп и Леонард Леви Скотт совместно работали над длинной серией статей о группах единиц целочисленных групповых колец , занимаясь проблемами, связанными с «проблемой интегрального изоморфизма», которая была предложена Грэмом Хигманом в его докторской диссертации 1940 года в Оксфордском университете. [4] [5] В 1986 году Роггенкамп и Скотт доказали свою самую известную теорему (опубликованную в 1987 году в Annals of Mathematics ). Их теорема утверждает, что для двух конечных групп и , если Z изоморфна Z, то изоморфна , в случае, когда и являются конечными p -группами над p -адическими целыми числами , а также в случае, когда и являются конечными нильпотентными группами . Их статья 1987 года также установила очень сильную форму гипотезы, выдвинутой Гансом Цассенхаузом . Статьи Роггенкампа и Скотта стали основой для большинства разработок, которые последовали в изучении конечных групп единиц целочисленных групповых колец. [2] Г {\displaystyle G} ЧАС {\displaystyle H} Г {\displaystyle G} ЧАС {\displaystyle H} Г {\displaystyle G} ЧАС {\displaystyle H} Г {\displaystyle G} ЧАС {\displaystyle H} Г {\displaystyle G} ЧАС {\displaystyle H}

В 1988 году Роггенкамп и Скотт нашли контрпример к другой гипотезе Ганса Цассенхауза — гипотеза была несколько усиленной формой гипотезы о том, что «проблема интегрального изоморфизма» всегда имеет утвердительное решение. [6] Мартин Хертвек, частично опираясь на методы, введенные Роггенкамп и Скоттом для их контрпримера, опубликовал контрпример к гипотезе о том, что «проблема интегрального изоморфизма» всегда может быть решена утвердительно. [7] [8]

Серия совместных статей Клауса Роггенкампа и Карла Грюнберга посвящена гомологическим рассмотрениям групп и связям с гомологическими вопросами групповых колец. В частности, авторы изучали модуль отношения группы, т. е. абелианизированное ядро ​​минимального представления группы. Были даны различные приложения, среди прочего, к вопросам о единицах в целочисленных групповых кольцах. Клаусу Роггенкампу удалось полностью прояснить структуру блоков p -адических групповых колец с циклической дефектной группой, тем самым установив интегральный аналог знаменитой теории алгебр деревьев Брауэра . Известно много приложений, и еще больше на подходе, от эквивалентностей между производными категориями до обратной задачи теории Галуа.
Новое направление теории представлений создано последними исследованиями Клауса Роггенкампа по порядкам более высокой размерности. Вдохновленный последними достижениями в теории представлений алгебраических групп, алгебраической комбинаторике, алгебрах Гекке и квантовых группах , Клаус Роггенкамп начал изучать порядки в двухмерных и более многомерных областях коэффициентов. [2]

Роггенкамп был избран членом Akademie gemeinnütziger Wissenschaften zu Erfurt (Эрфуртской академии полезных наук) и стал почетным членом Университета Овидия в Констанце в Румынии.

Избранные публикации

Статьи

  • Auslander, M.; Roggenkamp, ​​KW (1972). "Характеристика порядков конечного решетчатого типа". Inventiones Mathematicae . 17 : 79–84. Bibcode :1972InMat..17...79A. doi :10.1007/BF01390025. S2CID  121094091.
  • Грюнберг, К. В.; Роггенкамп, К. В. (1975). «Разложение идеала пополнения и модулей отношений конечной группы». Труды Лондонского математического общества . s3-31 (2): 149–166. doi :10.1112/plms/s3-31.2.149. ISSN  0024-6115.
  • Roggenkamp, ​​KW; Schmidt, JW (1976). "Почти расщепляемые последовательности для целочисленных групповых колец и порядков". Communications in Algebra . 4 (10): 893–917. doi :10.1080/00927877608822144.
  • Roggenkamp, ​​KW (1977). "Построение почти расщепляемых последовательностей для целочисленных групповых колец и порядков". Сообщения по алгебре . 5 (13): 1363–1373. doi :10.1080/00927877708822223.
  • Рингель, Клаус Михаэль; Роггенкамп, Клаус В. (1979). «Диаграммные методы в теории представлений порядков» (PDF) . Журнал алгебры . 60 (1): 11–42. doi :10.1016/0021-8693(79)90106-6.
  • Роггенкамп, Клаус; Скотт, Леонард (1987). «Изоморфизмы p-адических групповых колец». Annals of Mathematics . 126 (3): 593–647. doi :10.2307/1971362. JSTOR  1971362.
  • Roggenkamp, ​​KW (1991). "Проблема изоморфизма для целочисленных групповых колец конечных групп". Теория представлений конечных групп и конечномерных алгебр . стр. 193–220. doi :10.1007/978-3-0348-8658-1_7. ISBN 978-3-0348-9720-4.
  • Роггенкамп, К. В. (1992). «Блоки циклического дефекта и зеленые порядки». Сообщения по алгебре . 20 (6): 1715–1734. doi :10.1080/00927879208824426.
  • Киммерле, В.; Роггенкамп, К. В. (1993). «Проективные пределы групповых колец». Журнал чистой и прикладной алгебры . 88 (1–3): 119–142. doi :10.1016/0022-4049(93)90017-N.
  • Роггенкамп, Клаус В.; Циммерман, Александр (1995). «Внешние групповые автоморфизмы могут стать внутренними в целочисленном групповом кольце». Журнал чистой и прикладной алгебры . 103 : 91–99. doi : 10.1016/0022-4049(95)90113-Y .
  • Roggenkamp, ​​KW (1996). "Почти расщепляемые последовательности и треугольники для артиновых алгебр и порядков". Труды семинара в UNAM, Мексика, 16–20 августа 1994 г. Труды конференции Канадского математического общества, т. 19. стр. 261–280. ISBN 9780821803967.
  • Роггенкамп, Клаус В.; Кириченко Владимир Владимирович; Хибина Марина А.; Журавлев, Виктор Н. (2001). «Горенштейнские плиточные ордера». Связь в алгебре . 29 (9): 4231–4247. дои : 10.1081/AGB-100105998. S2CID  120994891.
  • Хандуджа, Судеш К.; Попеску, Н.; Роггенкамп, К. В. (2002). «О минимальных парах и остаточно трансцендентных расширениях оценок». Mathematika . 49 (1–2): 93–106. doi :10.1112/S0025579300016090.

Книги

  • Роггенкамп, КВ; Хубер-Дайсон, Верена (1970). Решетки над порядками. Конспект лекций по математике, 115 . Спрингер. ISBN 9780387049311.
  • Роггенкамп, Клаус В. (15 ноября 2006 г.). Решетки над порядками II. Конспект лекций по математике, 142. Springer Berlin Heidelberg. ISBN 978-3-540-36301-9.(перепечатка 1-го издания 1970 г.)
    • Роггенкамп, КВ (15 января 2014 г.). Решетки над порядками II. Спрингер. ISBN 9783662197349.(переиздание 2014 г.)
  • Reiner, Irving; Roggenkamp, ​​KW (15 ноября 2006 г.). Интегральные представления: темы в теории интегральных представлений. Интегральные представления и представления конечных групп. Lecture Notes in Mathematics 744 . Springer. ISBN 9783540350071.(перепечатка оригинального ISBN 1979 года 3-540-09546-2 ) 
  • Роггенкамп, К.В. (1980). Интегральные представления и строение конечных групповых колец. Департамент математики, Университет Монреаля. Семинар высшей математики 71 . Монреаль: Presses de l'Université de Montréal. ISBN 2-7606-0485-3.
  • Roggenkamp, ​​KW; Taylor, Martin J. (6 декабря 2012 г.). Групповые кольца и классовые группы. DMV-Seminar 18. Birkhäuser. ISBN 9783034886116.(перепечатка оригинального ISBN 1992 года 3-7643-2734-0 ) 

как редактор

  • Roggenkamp, ​​Klaus W., ред. (октябрь 1981 г.). Интегральные представления и приложения: Труды конференции, состоявшейся в Обервольфахе, Германия, 22–28 июня 1980 г. Springer. ISBN 978-3-540-10880-1.оглавление книги на сайте Springer
  • Роггенкамп, Клаус В.; Райнер, Ирвинг, ред. (2006), Порядки и их применение: Труды конференции, состоявшейся в Обервольфахе, Западная Германия, 3-9 июня 1984 г., Конспект лекций по математике, Springer-Verlag, ISBN 9783540396017(перепечатка 1-го издания 1985 г.)
  • Роггенкамп, КВ; Штефанеску, Мирела, ред. (31 августа 2001 г.). Алгебра - Теория представлений. Спрингер. ISBN 9780792371137.

Ссылки

  1. ^ Клаус Роггенкамп (на немецком языке)
  2. ^ abcd Кёниг, Штеффен; Циммерман, Александр (май 2000 г.). «Биография и благодарность по случаю 60-летия Клауса Роггенкампа» (PDF) .
  3. ^ Клаус Вильгельм Роггенкамп в проекте «Генеалогия математики»
  4. ^ Хигман, Грэм (1940). «Единицы групповых колец». Труды Лондонского математического общества . (2). 46 : 231–248. doi :10.1112/plms/s2-46.1.231.
  5. ^ Хертвек, Мартин (2007). «Единичные группы целочисленных конечных групповых колец без нециклических абелевых конечных подгрупп». arXiv : 0704.0412 [math.RT].
  6. ^ Скотт: О гипотезе Цассенхауза и далее. В: Леонид А. Бокуть, Ю. Л. Ершов , Алексей И. Костикин (ред.): Труды Международной конференции по алгебре. Посвящается памяти А. И. Мальцева (= Contemporary Mathematics. 131, 1). Том 1. Американское математическое общество, Провиденс, Род-Айленд, 1992, ISBN 0-8218-5136-5 , стр. 325-343 
  7. ^ "Сотрудничество". Леонард Скотт, Университет Вирджинии (faculty.virginia.edu) .
  8. ^ Мартин Хертвек: Контрпример к проблеме изоморфизма для целочисленных групповых колец. В: Annals of Mathematics. Серия 2, Том 154, № 1, 2001, стр. 115-138, doi :10.2307/3062112.
Взято с "https://en.wikipedia.org/w/index.php?title=Клаус_Вильгельм_Роггенкамп&oldid=1171005817"