Стандартная модель физики элементарных частиц |
---|
Физика элементарных частиц или физика высоких энергий — это изучение фундаментальных частиц и сил , которые составляют материю и излучение . Область также изучает комбинации элементарных частиц вплоть до масштаба протонов и нейтронов , в то время как изучение комбинации протонов и нейтронов называется ядерной физикой .
Фундаментальные частицы во Вселенной классифицируются в Стандартной модели как фермионы (частицы материи) и бозоны (частицы, переносящие силу). Существует три поколения фермионов, хотя обычная материя состоит только из первого поколения фермионов. Первое поколение состоит из верхних и нижних кварков , которые образуют протоны и нейтроны , а также электроны и электронные нейтрино . Известно, что три фундаментальных взаимодействия, опосредованных бозонами, — это электромагнетизм , слабое взаимодействие и сильное взаимодействие .
Кварки не могут существовать сами по себе, а образуют адроны . Адроны, содержащие нечетное число кварков, называются барионами , а те, которые содержат четное число, называются мезонами . Два бариона, протон и нейтрон , составляют большую часть массы обычной материи. Мезоны нестабильны, а самые долгоживущие из них живут всего несколько сотых микросекунды . Они возникают после столкновений частиц, состоящих из кварков, таких как быстро движущиеся протоны и нейтроны в космических лучах . Мезоны также производятся в циклотронах или других ускорителях частиц .
Частицы имеют соответствующие античастицы с той же массой , но с противоположными электрическими зарядами . Например, античастицей электрона является позитрон . Электрон имеет отрицательный электрический заряд, позитрон имеет положительный заряд. Эти античастицы теоретически могут образовывать соответствующую форму материи, называемую антиматерией . Некоторые частицы, такие как фотон , являются своими собственными античастицами.
Эти элементарные частицы являются возбуждениями квантовых полей , которые также управляют их взаимодействиями. Доминирующая теория, объясняющая эти фундаментальные частицы и поля, а также их динамику, называется Стандартной моделью . Согласование гравитации с текущей теорией физики элементарных частиц не решено; многие теории обращались к этой проблеме, такие как петлевая квантовая гравитация , теория струн и теория суперсимметрии .
Практическая физика элементарных частиц — это изучение этих частиц в радиоактивных процессах и в ускорителях частиц, таких как Большой адронный коллайдер . Теоретическая физика элементарных частиц — это изучение этих частиц в контексте космологии и квантовой теории . Эти две области тесно взаимосвязаны: бозон Хиггса был постулирован физиками-теоретиками, занимающимися частицами, и его существование подтверждено практическими экспериментами.
Идея о том, что вся материя в своей основе состоит из элементарных частиц, датируется по крайней мере VI веком до нашей эры. [1] В XIX веке Джон Дальтон в своей работе по стехиометрии пришел к выводу, что каждый элемент природы состоит из одного уникального типа частиц. [2] Слово атом , произошедшее от греческого слова atomos, означающего «неделимый», с тех пор обозначает мельчайшую частицу химического элемента , но позже физики обнаружили, что атомы на самом деле не являются фундаментальными частицами природы, а представляют собой конгломераты еще более мелких частиц, таких как электрон . Исследования ядерной физики и квантовой физики в начале XX века привели к доказательствам ядерного деления в 1939 году Лизой Мейтнер (основанным на экспериментах Отто Гана ), и ядерного синтеза Гансом Бете в том же году; оба открытия также привели к разработке ядерного оружия .
В течение 1950-х и 1960-х годов при столкновениях частиц из пучков все более высокой энергии было обнаружено ошеломляющее разнообразие частиц. Его неофициально называли « зоопарком частиц ». Важные открытия, такие как нарушение CP Джеймсом Кронином и Вэлом Фитчем, поставили новые вопросы о дисбалансе материи и антиматерии . [3] После формулирования Стандартной модели в 1970-х годах физики прояснили происхождение зоопарка частиц. Большое количество частиц было объяснено как комбинации (относительно) небольшого числа более фундаментальных частиц и оформлено в контексте квантовых теорий поля . Эта переклассификация ознаменовала начало современной физики элементарных частиц. [4] [5]
Современное состояние классификации всех элементарных частиц объясняется Стандартной моделью , которая получила широкое распространение в середине 1970-х годов после экспериментального подтверждения существования кварков . Она описывает сильные , слабые и электромагнитные фундаментальные взаимодействия , используя калибровочные бозоны- посредники . Видами калибровочных бозонов являются восемь глюонов ,
Вт−
,
Вт+
и
З
бозоны и фотон . [6] Стандартная модель также содержит 24 фундаментальных фермиона (12 частиц и связанных с ними античастиц), которые являются составляющими всей материи . [7] Наконец, Стандартная модель также предсказала существование типа бозона, известного как бозон Хиггса . 4 июля 2012 года физики с Большого адронного коллайдера в ЦЕРНе объявили, что они обнаружили новую частицу, которая ведет себя аналогично тому, что ожидается от бозона Хиггса. [8]
Стандартная модель, в ее нынешней формулировке, насчитывает 61 элементарную частицу. [9] Эти элементарные частицы могут объединяться в составные частицы, что составляет сотни других видов частиц, которые были открыты с 1960-х годов. Было обнаружено, что Стандартная модель согласуется почти со всеми экспериментальными тестами, проведенными на сегодняшний день. Однако большинство физиков, изучающих частицы, считают, что это неполное описание природы и что более фундаментальная теория ждет своего открытия (см. Теория всего ). В последние годы измерения массы нейтрино предоставили первые экспериментальные отклонения от Стандартной модели, поскольку нейтрино не имеют массы в Стандартной модели. [10]
This section may need to be rewritten to comply with Wikipedia's quality standards. (August 2024) |
Типы | Поколения | Античастица | Цвета | Общий | |
---|---|---|---|---|---|
Кварки | 2 | 3 | Пара | 3 | 36 |
Лептоны | Пара | Никто | 12 | ||
Глюоны | 1 | Никто | Собственный | 8 | 8 |
Фотон | Собственный | Никто | 1 | ||
Z-бозон | Собственный | 1 | |||
W-бозон | Пара | 2 | |||
Хиггс | Собственный | 1 | |||
Общее число (известных) элементарных частиц: | 61 |
Современные исследования физики элементарных частиц сосредоточены на субатомных частицах , включая атомные составляющие, такие как электроны , протоны и нейтроны (протоны и нейтроны являются составными частицами, называемыми барионами , состоящими из кварков ), которые производятся в результате радиоактивных и рассеивающих процессов; такими частицами являются фотоны , нейтрино и мюоны , а также широкий спектр экзотических частиц . [11] Все частицы и их взаимодействия, наблюдаемые на сегодняшний день, могут быть почти полностью описаны Стандартной моделью. [6]
Динамика частиц также регулируется квантовой механикой ; они демонстрируют корпускулярно-волновой дуализм , демонстрируя корпускулярно-подобное поведение в определенных экспериментальных условиях и волнообразное поведение в других. В более технических терминах они описываются квантовыми векторами состояния в гильбертовом пространстве , которое также рассматривается в квантовой теории поля . Следуя соглашению физиков-частиц, термин элементарные частицы применяется к тем частицам, которые, согласно современному пониманию, считаются неделимыми и не состоят из других частиц. [9]
Обычная материя состоит из кварков первого поколения ( вверх , вниз ) и лептонов ( электрон , электронное нейтрино ). [12] В совокупности кварки и лептоны называются фермионами , потому что они имеют квантовый спин полуцелых чисел (−1/2, 1/2, 3/2 и т. д.). Это заставляет фермионы подчиняться принципу исключения Паули , согласно которому никакие две частицы не могут занимать одно и то же квантовое состояние . [13] Кварки имеют дробный элементарный электрический заряд (−1/3 или 2/3) [14], а лептоны имеют целочисленный электрический заряд (0 или 1). [15] Кварки также имеют цветовой заряд , который помечается произвольно, без корреляции с фактическим цветом света как красный, зеленый и синий. [16] Поскольку взаимодействия между кварками хранят энергию, которая может преобразовываться в другие частицы, когда кварки находятся достаточно далеко друг от друга, кварки нельзя наблюдать независимо. Это называется ограничением цвета . [16]
Существуют три известных поколения кварков (верхний и нижний, странный и очарованный , верхний и нижний ) и лептонов (электрон и его нейтрино, мюон и его нейтрино , тау и его нейтрино ), с сильными косвенными доказательствами того, что четвертого поколения фермионов не существует. [17]
Бозоны являются посредниками или переносчиками фундаментальных взаимодействий, таких как электромагнетизм , слабое взаимодействие и сильное взаимодействие . [18] Электромагнетизм опосредуется фотоном , квантами света . [ 19] : 29–30 Слабое взаимодействие опосредуется W- и Z-бозонами . [20] Сильное взаимодействие опосредуется глюоном , который может связывать кварки вместе, образуя составные частицы. [21] Из- за вышеупомянутого ограничения цвета глюоны никогда не наблюдаются независимо. [22] Бозон Хиггса дает массу W- и Z-бозонам через механизм Хиггса [23] - глюон и фотон, как ожидается, не имеют массы . [22] Все бозоны имеют целочисленный квантовый спин (0 и 1) и могут иметь одинаковое квантовое состояние . [18]
Большинство вышеупомянутых частиц имеют соответствующие античастицы , которые составляют антиматерию . Нормальные частицы имеют положительное лептонное или барионное число , а античастицы имеют эти числа отрицательные. [24] Большинство свойств соответствующих античастиц и частиц одинаковы, с некоторыми изменениями; античастица электрона, позитрон, имеет противоположный заряд. Чтобы различать античастицы и частицы, в верхнем индексе добавляется знак плюс или минус . Например, электрон и позитрон обозначаются
е−
и
е+
. [25] Когда частица и античастица взаимодействуют друг с другом, они аннигилируют и превращаются в другие частицы. [26] Некоторые частицы, такие как фотон или глюон, не имеют античастиц. [ необходима цитата ]
Кварки и глюоны дополнительно имеют цветовые заряды, которые влияют на сильное взаимодействие. Цветовые заряды кварков называются красным, зеленым и синим (хотя сама частица не имеет физического цвета), а у антикварков они называются антикрасным, антизеленым и антисиним. [16] Глюон может иметь восемь цветовых зарядов , которые являются результатом взаимодействия кварков с образованием составных частиц (калибровочная симметрия SU(3) ). [27]
Нейтроны и протоны в атомных ядрах являются барионами — нейтрон состоит из двух нижних кварков и одного верхнего кварка, а протон состоит из двух верхних кварков и одного нижнего кварка. [ 28] Барион состоит из трех кварков, а мезон состоит из двух кварков (один нормальный, один анти). Барионы и мезоны вместе называются адронами . Кварки внутри адронов управляются сильным взаимодействием, поэтому подвергаются квантовой хромодинамике (цветовым зарядам). Связанные кварки должны иметь свой цветовой заряд, чтобы быть нейтральными или «белыми» по аналогии со смешиванием основных цветов . [29] Более экзотические адроны могут иметь другие типы, расположение или количество кварков ( тетракварк , пентакварк ). [30]
Атом состоит из протонов, нейтронов и электронов. [31] Изменяя частицы внутри обычного атома, можно образовать экзотические атомы . [32] Простым примером может служить водород-4.1 , в котором один из электронов заменен на мюон. [33]
Гравитон — гипотетическая частица, которая может быть посредником гравитационного взаимодействия, но она не была обнаружена или полностью согласована с текущими теориями. [ 34] Было предложено много других гипотетических частиц для устранения ограничений Стандартной модели. В частности, суперсимметричные частицы направлены на решение проблемы иерархии , аксионы решают сильную проблему CP , а различные другие частицы предлагаются для объяснения происхождения темной материи и темной энергии .
Крупнейшие мировые лаборатории физики элементарных частиц:
Quantum field theory |
---|
History |
Теоретическая физика элементарных частиц пытается разработать модели, теоретическую основу и математические инструменты для понимания текущих экспериментов и прогнозирования будущих экспериментов (см. также теоретическую физику ). Сегодня в теоретической физике элементарных частиц предпринимается несколько крупных взаимосвязанных усилий.
Одно важное направление пытается лучше понять Стандартную модель и ее тесты. Теоретики делают количественные предсказания наблюдаемых на коллайдерах и астрономических экспериментах, что вместе с экспериментальными измерениями используется для извлечения параметров Стандартной модели с меньшей неопределенностью. Эта работа исследует пределы Стандартной модели и, следовательно, расширяет научное понимание строительных блоков природы. Эти усилия осложняются трудностью вычисления высокоточных величин в квантовой хромодинамике . Некоторые теоретики, работающие в этой области, используют инструменты пертурбативной квантовой теории поля и эффективной теории поля , называя себя феноменологами . [ требуется ссылка ] Другие используют решеточную теорию поля и называют себя решеточными теоретиками .
Еще одно важное усилие направлено на построение моделей, где создатели моделей разрабатывают идеи о том, какая физика может лежать за пределами Стандартной модели (при более высоких энергиях или меньших расстояниях). Эта работа часто мотивируется проблемой иерархии и ограничивается существующими экспериментальными данными. [47] [48] Она может включать работу над суперсимметрией , альтернативами механизму Хиггса , дополнительными пространственными измерениями (такими как модели Рэндалла–Сундрума ), теорией Преона , комбинациями этих или другими идеями. Теория исчезающих измерений — это теория физики элементарных частиц, предполагающая, что системы с более высокой энергией имеют меньшее количество измерений. [49]
Третьей крупной попыткой в теоретической физике частиц является теория струн . Теоретики струн пытаются построить единое описание квантовой механики и общей теории относительности , строя теорию, основанную на малых струнах и бранах , а не на частицах. Если теория окажется успешной, ее можно будет считать « Теорией всего », или «TOE». [50]
Существуют также другие направления работы в теоретической физике элементарных частиц, от космологии элементарных частиц до петлевой квантовой гравитации . [ необходима ссылка ]
В принципе, вся физика (и практические приложения, разработанные на ее основе) могут быть получены из изучения фундаментальных частиц. На практике, даже если «физика элементарных частиц» означает только «высокоэнергетические атомные ускорители», во время этих пионерских исследований было разработано много технологий, которые позже нашли широкое применение в обществе. Ускорители частиц используются для производства медицинских изотопов для исследований и лечения (например, изотопов, используемых в ПЭТ-визуализации ), или используются непосредственно во внешней лучевой терапии . Разработка сверхпроводников была подтолкнута их использованием в физике элементарных частиц. Всемирная паутина и технология сенсорных экранов были первоначально разработаны в ЦЕРНе . Дополнительные приложения находятся в медицине, национальной безопасности, промышленности, вычислениях, науке и развитии рабочей силы, иллюстрируя длинный и растущий список полезных практических приложений с вкладом физики элементарных частиц. [51]
Основные усилия по поиску физики за пределами Стандартной модели включают в себя проект Будущего кольцевого коллайдера, предложенный ЦЕРНом [52], и Группу по приоритетам проектов физики элементарных частиц (P5) в США, которая обновит исследование P5 2014 года, в котором рекомендовался эксперимент по исследованию нейтрино в глубине под землей , а также другие эксперименты.
{{cite book}}
: CS1 maint: location missing publisher (link)Обычная материя полностью состоит из частиц первого поколения, а именно u- и d-кварков, а также электрона и его нейтрино.
... бозон: Частица, переносящая силу, в отличие от частицы материи (фермиона). Бозоны могут накладываться друг на друга без ограничений. Примерами являются фотоны, глюоны, гравитоны, слабые бозоны и бозон Хиггса. Спин бозона всегда является целым числом: 0, 1, 2 и т. д. ...
Сохранение материи означает сохранение барионного числа
A
и лептонного числа
L
, причем
A
и
L
являются алгебраическими числами. Положительные
A
и
L
связаны с частицами материи, отрицательные
A
и
L
связаны с частицами антиматерии. Все известные взаимодействия сохраняют материю.