В арифметике и алгебре куб числа n — это его третья степень , то есть результат умножения трех экземпляров n . Куб числа или любого другого математического выражения обозначается верхним индексом 3, например, 2 3 = 8 или ( x + 1) 3 .
Куб также представляет собой число, умноженное на его квадрат :
Функция куба — это функция x ↦ x 3 (часто обозначаемая как y = x 3 ), которая отображает число в его куб. Это нечетная функция , так как
Объем геометрического куба равен кубу длины его стороны, что и дало название. Обратная операция, которая состоит в нахождении числа, куб которого равен n , называется извлечением кубического корня из n . Она определяет сторону куба заданного объема. Она также равна n, возведенному в третью степень.
График кубической функции известен как кубическая парабола . Поскольку кубическая функция является нечетной функцией, эта кривая имеет центр симметрии в начале координат, но не имеет оси симметрии .
Кубическое число , или совершенный куб , или иногда просто куб , — это число, которое является кубом целого числа . Неотрицательные совершенные кубы до 60 3 (последовательность A000578 в OEIS ):
0 3 = | 0 | ||||||||||
1 3 = | 1 | 11 3 = | 1331 | 21 3 = | 9261 | 31 3 = | 29,791 | 41 3 = | 68,921 | 51 3 = | 132,651 |
2 3 = | 8 | 12 3 = | 1728 | 22 3 = | 10,648 | 32 3 = | 32,768 | 42 3 = | 74,088 | 52 3 = | 140,608 |
3 3 = | 27 | 13 3 = | 2197 | 23 3 = | 12,167 | 33 3 = | 35,937 | 43 3 = | 79,507 | 53 3 = | 148,877 |
4 3 = | 64 | 14 3 = | 2744 | 24 3 = | 13,824 | 34 3 = | 39,304 | 44 3 = | 85,184 | 54 3 = | 157,464 |
5 3 = | 125 | 15 3 = | 3375 | 25 3 = | 15,625 | 35 3 = | 42,875 | 45 3 = | 91,125 | 55 3 = | 166,375 |
6 3 = | 216 | 16 3 = | 4096 | 26 3 = | 17,576 | 36 3 = | 46,656 | 46 3 = | 97,336 | 56 3 = | 175,616 |
7 3 = | 343 | 17 3 = | 4913 | 27 3 = | 19,683 | 37 3 = | 50,653 | 47 3 = | 103,823 | 57 3 = | 185,193 |
8 3 = | 512 | 18 3 = | 5832 | 28 3 = | 21,952 | 38 3 = | 54,872 | 48 3 = | 110,592 | 58 3 = | 195,112 |
9 3 = | 729 | 19 3 = | 6859 | 29 3 = | 24,389 | 39 3 = | 59,319 | 49 3 = | 117,649 | 59 3 = | 205,379 |
10 3 = | 1000 | 20 3 = | 8000 | 30 3 = | 27,000 | 40 3 = | 64,000 | 50 3 = | 125,000 | 60 3 = | 216,000 |
Геометрически говоря, положительное целое число m является идеальным кубом тогда и только тогда, когда можно расположить m цельных единичных кубов в более крупный цельный куб. Например, 27 маленьких кубиков можно расположить в один большой с видом кубика Рубика , так как 3 × 3 × 3 = 27 .
Разницу между кубами последовательных целых чисел можно выразить следующим образом:
или
Минимального совершенного куба не существует, поскольку куб отрицательного целого числа отрицателен. Например, (−4) × (−4) × (−4) = −64 .
В отличие от полных квадратов , полные кубы не имеют малого количества возможностей для последних двух цифр. За исключением кубов, делящихся на 5, где только 25 , 75 и 00 могут быть последними двумя цифрами, любая пара цифр с нечетной последней цифрой может встречаться как последние цифры совершенного куба. С четными кубами существует значительное ограничение, так как только 00 , o2 , e4 , o6 и e8 могут быть последними двумя цифрами совершенного куба (где o обозначает любую нечетную цифру, а e — любую четную цифру). Некоторые кубические числа также являются квадратными числами; например, 64 является квадратным числом ( 8 × 8) и кубическим числом (4 × 4 × 4) . Это происходит тогда и только тогда, когда число является полной шестой степенью (в данном случае 2 6 ).
Последние цифры каждой третьей степени:
0 | 1 | 8 | 7 | 4 | 5 | 6 | 3 | 2 | 9 |
Однако легко показать, что большинство чисел не являются идеальными кубами, поскольку все идеальные кубы должны иметь цифровой корень 1 , 8 или 9. То есть их значения по модулю 9 могут быть только 0, 1 и 8. Более того, цифровой корень куба любого числа можно определить по остатку, который дает это число при делении на 3:
Предполагается, что каждое целое число (положительное или отрицательное), не сравнимое с ±4 по модулю 9, можно записать в виде суммы трех (положительных или отрицательных) кубов бесконечным числом способов. [1] Например, . Целые числа, сравнимые с ±4 по модулю 9, исключаются, поскольку их нельзя записать в виде суммы трех кубов.
Наименьшее такое целое число, для которого такая сумма неизвестна, — 114. В сентябре 2019 года было обнаружено, что предыдущее наименьшее такое целое число с неизвестной суммой в 3 кубах, 42, удовлетворяет этому уравнению: [2]
Одно решение приведено в таблице ниже для n ≤ 78 , и n не сравнимо с 4 или 5 по модулю 9. Выбранное решение — это то, которое является примитивным ( gcd( x , y , z ) = 1 ), не имеет вида или (так как они являются бесконечными семействами решений), удовлетворяет 0 ≤ | x | ≤ | y | ≤ | z | и имеет минимальные значения для | z | и | y | (проверяются в этом порядке). [3] [4] [5]
Выбираются только примитивные решения, поскольку непримитивные решения могут быть тривиально выведены из решений для меньшего значения n . Например, для n = 24 решение получается из решения путем умножения всего на Поэтому это еще одно выбранное решение. Аналогично, для n = 48 решение ( x , y , z ) = (-2, -2, 4) исключается, и это решение ( x , y , z ) = (-23, -26, 31) выбирается.
Примитивные решения для n от 1 до 78 | ||||||||
н | х | у | з | н | х | у | з | |
---|---|---|---|---|---|---|---|---|
1 | 9 | 10 | −12 | 39 | 117 367 | 134 476 | −159 380 | |
2 | 1 214 928 | 3 480 205 | −3 528 875 | 42 | 12 602 123 297 335 631 | 80 435 758 145 817 515 | −80 538 738 812 075 974 | |
3 | 1 | 1 | 1 | 43 | 2 | 2 | 3 | |
6 | −1 | −1 | 2 | 44 | −5 | −7 | 8 | |
7 | 0 | −1 | 2 | 45 | 2 | −3 | 4 | |
8 | 9 | 15 | −16 | 46 | −2 | 3 | 3 | |
9 | 0 | 1 | 2 | 47 | 6 | 7 | −8 | |
10 | 1 | 1 | 2 | 48 | −23 | −26 | 31 | |
11 | −2 | −2 | 3 | 51 | 602 | 659 | −796 | |
12 | 7 | 10 | −11 | 52 | 23 961 292 454 | 60 702 901 317 | −61 922 712 865 | |
15 | −1 | 2 | 2 | 53 | −1 | 3 | 3 | |
16 | −511 | −1609 | 1626 | 54 | −7 | −11 | 12 | |
17 | 1 | 2 | 2 | 55 | 1 | 3 | 3 | |
18 | −1 | −2 | 3 | 56 | −11 | −21 | 22 | |
19 | 0 | −2 | 3 | 57 | 1 | −2 | 4 | |
20 | 1 | −2 | 3 | 60 | −1 | −4 | 5 | |
21 | −11 | −14 | 16 | 61 | 0 | −4 | 5 | |
24 | −2 901 096 694 | −15 550 555 555 | 15 584 139 827 | 62 | 2 | 3 | 3 | |
25 | −1 | −1 | 3 | 63 | 0 | −1 | 4 | |
26 | 0 | −1 | 3 | 64 | −3 | −5 | 6 | |
27 | −4 | −5 | 6 | 65 | 0 | 1 | 4 | |
28 | 0 | 1 | 3 | 66 | 1 | 1 | 4 | |
29 | 1 | 1 | 3 | 69 | 2 | −4 | 5 | |
30 | −283 059 965 | −2 218 888 517 | 2 220 422 932 | 70 | 11 | 20 | −21 | |
33 | −2 736 111 468 807 040 | −8 778 405 442 862 239 | 8 866 128 975 287 528 | 71 | −1 | 2 | 4 | |
34 | −1 | 2 | 3 | 72 | 7 | 9 | −10 | |
35 | 0 | 2 | 3 | 73 | 1 | 2 | 4 | |
36 | 1 | 2 | 3 | 74 | 66 229 832 190 556 | 283 450 105 697 727 | −284 650 292 555 885 | |
37 | 0 | −3 | 4 | 75 | 4 381 159 | 435 203 083 | −435 203 231 | |
38 | 1 | −3 | 4 | 78 | 26 | 53 | −55 |
Уравнение x 3 + y 3 = z 3 не имеет нетривиальных (т.е. xyz ≠ 0 ) решений в целых числах. Фактически, оно не имеет ни одного в целых числах Эйзенштейна . [6]
Оба эти утверждения верны также для уравнения [7] x 3 + y 3 = 3 z 3 .
Сумма первых n кубов равна n- му треугольному числу в квадрате:
Доказательства. Чарльз Уитстон (1854) дает особенно простой вывод, расширяя каждый куб в сумме в набор последовательных нечетных чисел. Он начинает с того, что дает тождество
Это тождество связано с треугольными числами следующим образом:
и, таким образом, слагаемые, формирующие , начинаются сразу после тех, которые формируют все предыдущие значения до . Применяем это свойство вместе с другим хорошо известным тождеством:
получаем следующий вывод:
В более поздней математической литературе Штейн (1971) использует интерпретацию этих чисел с помощью подсчета прямоугольников, чтобы сформировать геометрическое доказательство тождества (см. также Benjamin, Quinn & Wurtz 2006); он замечает, что это также может быть легко доказано (но неинформативно) по индукции, и утверждает, что Теплиц (1963) дает «интересное старое арабское доказательство». Каним (2004) дает чисто визуальное доказательство, Бенджамин и Оррисон (2002) дают два дополнительных доказательства, а Нельсен (1993) дает семь геометрических доказательств.
Например, сумма первых 5 кубов равна квадрату 5-го треугольного числа,
Аналогичный результат можно получить для суммы первых y нечетных кубов:
но x , y должны удовлетворять отрицательному уравнению Пелля x 2 − 2 y 2 = −1 . Например, для y = 5 и 29 , тогда,
и т. д. Кроме того, каждое четное совершенное число , кроме наименьшего, является суммой первых 2 п −1 / 2
нечетные кубы ( p = 3, 5, 7, ...):
Существуют примеры кубов чисел в арифметической прогрессии , сумма которых является кубом:
с первым иногда идентифицируемым как таинственное число Платона . Формула F для нахождения суммы n кубов чисел в арифметической прогрессии с разностью d и начальным кубом a 3 ,
дается
Параметрическое решение
известен для частного случая d = 1 , или последовательных кубов, как было обнаружено Паглиани в 1829 году. [8]
В последовательности нечетных целых чисел 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ... первое число является кубом ( 1 = 1 3 ); сумма следующих двух чисел является следующим кубом ( 3 + 5 = 2 3 ); сумма следующих трех чисел является следующим кубом ( 7 + 9 + 11 = 3 3 ); и так далее.
Каждое положительное целое число можно записать как сумму девяти (или меньшего количества) положительных кубов. Этот верхний предел в девять кубов не может быть уменьшен, поскольку, например, 23 не может быть записано как сумма менее девяти положительных кубов:
Каждое положительное рациональное число является суммой трех положительных рациональных кубов [9] , и существуют рациональные числа, которые не являются суммой двух рациональных кубов [10] .
В действительных числах функция куба сохраняет порядок: большие числа имеют большие кубы. Другими словами, кубы (строго) монотонно возрастают . Кроме того, ее областью значений является вся вещественная прямая : функция x ↦ x 3 : R → R является сюръекцией (принимает все возможные значения). Только три числа равны своим собственным кубам: −1 , 0 и 1 . Если −1 < x < 0 или 1 < x , то x 3 > x . Если x < −1 или 0 < x < 1 , то x 3 < x . Все вышеупомянутые свойства относятся также к любой более высокой нечетной степени ( x 5 , x 7 , ...) действительных чисел. Равенства и неравенства также верны в любом упорядоченном кольце .
Объемы подобных евклидовых тел относятся как кубы их линейных размеров.
В комплексных числах куб чисто мнимого числа также является чисто мнимым. Например, i 3 = − i .
Производная x 3 равна 3 x 2 .
Кубы иногда обладают сюръективным свойством в других полях , например, в F p для таких простых p , что p ≠ 1 (mod 3) , [11] , но не обязательно: см. контрпример с рациональными числами выше. Также в F 7 только три элемента 0, ±1 являются совершенными кубами из семи в общей сложности. −1, 0 и 1 являются совершенными кубами в любом месте и единственными элементами поля, равными своим собственным кубам: x 3 − x = x ( x − 1)( x + 1) .
Определение кубов больших чисел было очень распространено во многих древних цивилизациях . Месопотамские математики создали клинописные таблички с таблицами для вычисления кубов и кубических корней к старовавилонскому периоду (20-16 вв. до н. э.). [12] [13] Кубические уравнения были известны древнегреческому математику Диофанту . [ 14] Герон Александрийский разработал метод вычисления кубических корней в I в. н. э. [15] Методы решения кубических уравнений и извлечения кубических корней появляются в «Девяти главах о математическом искусстве» , китайском математическом тексте, составленном около II в. до н. э. и прокомментированном Лю Хуэем в III в. н. э. [16]