Регуляторная субъединица 8 не-АТФазы протеасомы 26S представляет собой фермент , который у человека кодируется геном PSMD8 . [ 5] [6]
Функция
Протеасома 26S представляет собой мультикаталитический комплекс протеиназы с высокоупорядоченной структурой, состоящий из 2 комплексов, ядра 20S и регулятора 19S. Ядро 20S состоит из 4 колец из 28 неидентичных субъединиц; 2 кольца состоят из 7 альфа-субъединиц и 2 кольца состоят из 7 бета-субъединиц. Регулятор 19S состоит из основания, которое содержит 6 субъединиц АТФазы и 2 не-АТФазы субъединицы, и крышки, которая содержит до 10 не-АТФазы субъединиц. Протеасомы распределены по всем эукариотическим клеткам в высокой концентрации и расщепляют пептиды в процессе, зависимом от АТФ/убиквитина, в нелизосомальном пути. Существенной функцией модифицированной протеасомы, иммунопротеасомы, является обработка пептидов MHC класса I. Этот ген кодирует не-АТФазную субъединицу регулятора 19S. Псевдоген был идентифицирован на хромосоме 1. [6]
Клиническое значение
Протеасома и ее субъединицы имеют клиническое значение по крайней мере по двум причинам: (1) нарушенная сложная сборка или дисфункциональная протеасома могут быть связаны с базовой патофизиологией определенных заболеваний, и (2) их можно использовать в качестве лекарственных мишеней для терапевтических вмешательств. В последнее время все больше усилий было приложено для рассмотрения протеасомы с целью разработки новых диагностических маркеров и стратегий. Улучшенное и всестороннее понимание патофизиологии протеасомы должно привести к ее клиническому применению в будущем.
Протеасомы образуют основной компонент для системы убиквитин-протеасома (UPS) [7] и соответствующего контроля качества клеточного белка (PQC). Убиквитинирование белка и последующий протеолиз и деградация протеасомой являются важными механизмами в регуляции клеточного цикла , роста и дифференциации клеток , транскрипции генов, передачи сигнала и апоптоза . [8] Впоследствии, нарушенная сборка и функционирование комплекса протеасомы приводят к снижению протеолитической активности и накоплению поврежденных или неправильно свернутых видов белка. Такое накопление белка может способствовать патогенезу и фенотипическим характеристикам при нейродегенеративных заболеваниях, [9] [10] сердечно-сосудистых заболеваниях, [11] [12] [13] воспалительных реакциях и аутоиммунных заболеваниях, [14] и системных реакциях на повреждение ДНК, приводящих к злокачественным новообразованиям . [15]
^ Kleiger G, Mayor T (июнь 2014 г.). «Опасное путешествие: экскурсия по системе убиквитин–протеасома». Trends in Cell Biology . 24 (6): 352– 9. doi : 10.1016 /j.tcb.2013.12.003. PMC 4037451. PMID 24457024.
^ Goldberg AL, Stein R, Adams J (август 1995 г.). «Новые взгляды на функцию протеасомы: от архебактерий до разработки лекарств». Химия и биология . 2 (8): 503– 8. doi : 10.1016/1074-5521(95)90182-5 . PMID 9383453.
^ Sulistio YA, Heese K (январь 2015). «Система убиквитин-протеасома и нарушение регуляции молекулярных шаперонов при болезни Альцгеймера». Молекулярная нейробиология . 53 (2): 905– 31. doi :10.1007/s12035-014-9063-4. PMID 25561438. S2CID 14103185.
^ Ортега З., Лукас Дж. Дж. (2014 ) . «Участие системы убиквитин-протеасома в болезни Хантингтона». Frontiers in Molecular Neuroscience . 7 : 77. doi : 10.3389/fnmol.2014.00077 . PMC 4179678. PMID 25324717.
^ Sandri M, Robbins J (июнь 2014 г.). «Протеотоксичность: недооцененная патология при сердечных заболеваниях». Журнал молекулярной и клеточной кардиологии . 71 : 3– 10. doi : 10.1016/j.yjmcc.2013.12.015. PMC 4011959. PMID 24380730.
^ Drews O, Taegtmeyer H (декабрь 2014 г.). «Воздействие на систему убиквитин-протеасомы при заболеваниях сердца: основа новых терапевтических стратегий». Антиоксиданты и окислительно-восстановительная сигнализация . 21 (17): 2322– 43. doi :10.1089/ars.2013.5823. PMC 4241867. PMID 25133688 .
^ Wang ZV, Hill JA (февраль 2015). «Контроль качества белка и метаболизм: двунаправленный контроль в сердце». Cell Metabolism . 21 (2): 215–26 . doi :10.1016/j.cmet.2015.01.016. PMC 4317573. PMID 25651176 .
^ ab Karin M, Delhase M (февраль 2000 г.). «Киназа I каппа B (IKK) и NF-каппа B: ключевые элементы провоспалительной сигнализации». Семинары по иммунологии . 12 (1): 85–98 . doi :10.1006/smim.2000.0210. PMID 10723801.
^ Ермолаева МА, Даховник А, Шумахер Б (сентябрь 2015 г.). «Механизмы контроля качества в клеточных и системных реакциях на повреждение ДНК». Ageing Research Reviews . 23 (Pt A): 3– 11. doi :10.1016/j.arr.2014.12.009. PMC 4886828. PMID 25560147 .
^ Чеклер Ф, да Коста Калифорния, Анколио К, Шевалье Н, Лопес-Перес Э, Марамбо П (июль 2000 г.). «Роль протеасомы в болезни Альцгеймера». Biochimica et Biophysica Acta (BBA) - Молекулярные основы болезней . 1502 (1): 133–8 . doi : 10.1016/s0925-4439(00)00039-9 . ПМИД 10899438.
^ ab Chung KK, Dawson VL, Dawson TM (ноябрь 2001 г.). «Роль убиквитин-протеасомного пути при болезни Паркинсона и других нейродегенеративных расстройствах». Trends in Neurosciences . 24 (11 Suppl): S7–14. doi :10.1016/s0166-2236(00)01998-6. PMID 11881748. S2CID 2211658.
^ ab Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (июль 2002 г.). «Морфометрическая переоценка системы двигательных нейронов болезни Пика и бокового амиотрофического склероза с деменцией». Acta Neuropathologica . 104 (1): 21– 8. doi :10.1007/s00401-001-0513-5. PMID 12070660. S2CID 22396490.
^ Манака Х, Като Т, Курита К, Катагири Т, Шикама Ю, Куджирай К, Каванами Т, Сузуки Ю, Нихей К, Сасаки Х (май 1992 г.). «Заметное увеличение убиквитина спинномозговой жидкости при болезни Крейтцфельдта-Якоба». Письма по неврологии . 139 (1): 47–9 . doi :10.1016/0304-3940(92)90854-z. PMID 1328965. S2CID 28190967.
^ Mathews KD, Moore SA (январь 2003 г.). «Поясно-конечностная мышечная дистрофия». Current Neurology and Neuroscience Reports . 3 (1): 78– 85. doi :10.1007/s11910-003-0042-9. PMID 12507416. S2CID 5780576.
^ Mayer RJ (март 2003 г.). «От нейродегенерации к нейрогомеостазу: роль убиквитина». Drug News & Perspectives . 16 (2): 103– 8. doi :10.1358/dnp.2003.16.2.829327. PMID 12792671.
^ Calise J, Powell SR (февраль 2013 г.). «Система протеасомы убиквитина и ишемия миокарда». Американский журнал физиологии. Физиология сердца и кровообращения . 304 (3): H337–49. doi :10.1152/ajpheart.00604.2012. PMC 3774499. PMID 23220331 .
^ Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (март 2010 г.). «Дисфункция убиквитин-протеасомы при гипертрофических и дилатационных кардиомиопатиях у человека». Circulation . 121 (8): 997– 1004. doi :10.1161/CIRCULATIONAHA.109.904557. PMC 2857348 . PMID 20159828.
^ Powell SR (июль 2006 г.). «Система убиквитин-протеасома в физиологии и патологии сердца». Американский журнал физиологии. Физиология сердца и кровообращения . 291 (1): H1 – H19 . doi :10.1152/ajpheart.00062.2006. PMID 16501026. S2CID 7073263.
^ Адамс Дж (апрель 2003 г.). «Потенциал ингибирования протеасом при лечении рака». Drug Discovery Today . 8 (7): 307– 15. doi :10.1016/s1359-6446(03)02647-3. PMID 12654543.
^ Ben-Neriah Y (январь 2002). «Регуляторные функции убиквитинирования в иммунной системе». Nature Immunology . 3 (1): 20– 6. doi :10.1038/ni0102-20. PMID 11753406. S2CID 26973319.
^ Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester GR, Kloetzel PM, Feist E (октябрь 2002 г.). «Циркулирующие протеасомы являются маркерами повреждения клеток и иммунологической активности при аутоиммунных заболеваниях». Журнал ревматологии . 29 (10): 2045–52 . PMID 12375310.
Дальнейшее чтение
Coux O, Tanaka K, Goldberg AL (1996). «Структура и функции протеасом 20S и 26S». Annual Review of Biochemistry . 65 : 801–47 . doi :10.1146/annurev.bi.65.070196.004101. PMID 8811196.
Goff SP (август 2003 г.). «Смерть от дезаминирования: новая система ограничения хозяина для ВИЧ-1». Cell . 114 (3): 281– 3. doi : 10.1016/S0092-8674(03)00602-0 . PMID 12914693. S2CID 16340355.
Сигер М., Феррелл К., Фрэнк Р., Дубиель В. (март 1997 г.). «ВИЧ-1 tat ингибирует протеасому 20 S и ее активацию, опосредованную регулятором 11 S». Журнал биологической химии . 272 (13): 8145– 8. doi : 10.1074/jbc.272.13.8145 . PMID 9079628.
Мадани Н., Кабат Д. (декабрь 1998 г.). «Эндогенный ингибитор вируса иммунодефицита человека в лимфоцитах человека преодолевается вирусным белком Vif». Журнал вирусологии . 72 (12): 10251–5 . doi :10.1128/JVI.72.12.10251-10255.1998. ПМК 110608 . ПМИД 9811770.
Simon JH, Gaddis NC, Fouchier RA, Malim MH (декабрь 1998 г.). «Доказательства недавно обнаруженного клеточного фенотипа анти-ВИЧ-1». Nature Medicine . 4 (12): 1397– 400. doi :10.1038/3987. PMID 9846577. S2CID 25235070.
Mulder LC, Muesing MA (сентябрь 2000 г.). «Деградация интегразы ВИЧ-1 по пути правила N-конца». Журнал биологической химии . 275 (38): 29749– 53. doi : 10.1074/jbc.M004670200 . PMID 10893419.
Li T, Duan W, Yang H, Lee MK, Bte Mustafa F, Lee BH, Teo TS (январь 2001 г.). «Идентификация двух белков, S14 и UIP1, которые взаимодействуют с UCH37». FEBS Letters . 488 (3): 201– 5. doi :10.1016/S0014-5793(00)02436-4. hdl : 10536/DRO/DU:30009147 . PMID 11163772. S2CID 40717095.
Sheehy AM, Gaddis NC, Choi JD, Malim MH (август 2002 г.). «Выделение человеческого гена, который подавляет инфекцию ВИЧ-1 и подавляется вирусным белком Vif». Nature . 418 (6898): 646– 50. Bibcode :2002Natur.418..646S. doi :10.1038/nature00939. PMID 12167863. S2CID 4403228.
Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W (ноябрь 2002 г.). «Сайт RTP, общий для белка Tat ВИЧ-1 и регуляторной субъединицы 11S альфа, имеет решающее значение для их влияния на функцию протеасомы, включая обработку антигенов». Журнал молекулярной биологии . 323 (4): 771– 82. doi :10.1016/S0022-2836(02)00998-1. PMID 12419264.
Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH (май 2003 г.). «Комплексное исследование молекулярного дефекта в вирионах вируса иммунодефицита человека типа 1 с дефицитом vif». Журнал вирусологии . 77 (10): 5810– 20. doi :10.1128/JVI.77.10.5810-5820.2003. PMC 154025. PMID 12719574 .
Lecossier D, Bouchonnet F, Clavel F, Hance AJ (май 2003 г.). "Гипермутация ДНК ВИЧ-1 в отсутствие белка Vif". Science . 300 (5622): 1112. doi :10.1126/science.1083338. PMID 12750511. S2CID 20591673.
Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (июль 2003 г.). «Цитидиндезаминаза CEM15 вызывает гипермутацию в недавно синтезированной ДНК ВИЧ-1». Nature . 424 (6944): 94– 8. Bibcode :2003Natur.424...94Z. doi :10.1038/nature01707. PMC 1350966 . PMID 12808465.
Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (июль 2003 г.). «Широкая антиретровирусная защита с помощью человеческого APOBEC3G посредством летального редактирования зарождающихся обратных транскриптов». Nature . 424 (6944): 99– 103. Bibcode :2003Natur.424...99M. doi :10.1038/nature01709. PMID 12808466. S2CID 4347374.
Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH (июнь 2003 г.). «Дезаминирование ДНК опосредует врожденный иммунитет к ретровирусной инфекции». Cell . 113 (6): 803– 9. doi : 10.1016/S0092-8674(03)00423-9 . PMID 12809610. S2CID 544971.
Harris RS, Sheehy AM, Craig HM, Malim MH, Neuberger MS (июль 2003 г.). «Дезаминирование ДНК: не просто триггер для диверсификации антител, но и механизм защиты от ретровирусов». Nature Immunology . 4 (7): 641– 3. doi :10.1038/ni0703-641. PMID 12830140. S2CID 5549252.