Теорема Мацумото (теория групп)

В теории групп теорема Мацумото , доказанная Хидэя Мацумото  (1964), дает условия, при которых два приведенных слова группы Кокстера представляют один и тот же элемент.

Заявление

Если два сокращенных слова представляют один и тот же элемент группы Коксетера, то теорема Мацумото утверждает, что первое слово можно преобразовать во второе путем многократного преобразования

xyxy... в yxyx... (или наоборот)

где

хуху... = ухух...

является одним из определяющих соотношений группы Кокстера.

Приложения

Из теоремы Мацумото следует, что существует естественное отображение (не гомоморфизм групп ) из группы Кокстера в соответствующую группу кос , переводящее любой элемент группы Кокстера, представленный некоторым приведенным словом в образующих, в то же самое слово в образующих группы кос.

Ссылки

  • Мацумото, Хидэя (1964), «Générateurs и отношения групп общего Вейля», CR Acad. наук. Париж , 258 : 3419–3422 , MR  0183818.


Взято с "https://en.wikipedia.org/w/index.php?title=Matsumoto%27s_theorem_(group_theory)&oldid=1170058310"