Число Марангони ( Ma ) — это, как обычно определяется, безразмерное число , которое сравнивает скорость переноса, обусловленную потоками Марангони , со скоростью переноса диффузии. Эффект Марангони — это поток жидкости, обусловленный градиентами поверхностного натяжения жидкости. Диффузия — это то, что создает градиент поверхностного натяжения. Таким образом, поскольку число Марангони сравнивает временные масштабы потока и диффузии, оно является типом числа Пекле .
Число Марангони определяется как:
Распространенным примером являются градиенты поверхностного натяжения, вызванные градиентами температуры. [1] Тогда соответствующий процесс диффузии — это процесс тепловой энергии (тепла). Другой пример — поверхностные градиенты, вызванные изменениями концентрации поверхностно-активных веществ, где диффузия теперь происходит молекулами поверхностно-активного вещества.
Число названо в честь итальянского ученого Карло Марангони , хотя его использование датируется 1950-ми годами [1] [2] , и оно не было открыто и использовано Карло Марангони.
Число Марангони для простой жидкости вязкости с изменением поверхностного натяжения на расстоянии, параллельном поверхности, можно оценить следующим образом. Обратите внимание, что мы предполагаем, что это единственный масштаб длины в задаче, что на практике подразумевает, что жидкость должна быть по крайней мере глубокой. Скорость переноса обычно оценивается с помощью уравнений течения Стокса , где скорость жидкости получается путем приравнивания градиента напряжения к вязкой диссипации. Поверхностное натяжение — это сила на единицу длины, поэтому результирующее напряжение должно масштабироваться как , в то время как вязкое напряжение масштабируется как , для скорости течения Марангони. Приравнивая эти два числа, мы получаем скорость потока . Поскольку Ma — это тип числа Пекле , это скорость, умноженная на длину, деленная на постоянную диффузии , , Здесь это постоянная диффузии того, что вызывает разницу поверхностного натяжения. Итак,
Обычно применяется к слою жидкости, например воды, когда в этом слое есть разница температур. Это может быть связано с испарением жидкости или ее нагреванием снизу. На поверхности жидкости существует поверхностное натяжение, которое зависит от температуры, обычно по мере повышения температуры поверхностное натяжение уменьшается. Таким образом, если из-за небольшого колебания температуры одна часть поверхности горячее другой, то возникнет поток от более горячей части к более холодной, обусловленный этой разницей в поверхностном натяжении; этот поток называется эффектом Марангони . Этот поток будет переносить тепловую энергию, а число Марангони сравнивает скорость, с которой тепловая энергия переносится этим потоком, со скоростью, с которой тепловая энергия рассеивается.
Для слоя жидкости толщиной , вязкостью и температуропроводностью , с поверхностным натяжением , которое изменяется с температурой со скоростью , число Марангони можно рассчитать по следующей формуле: [3]
Когда Ma мало, преобладает термодиффузия и потока нет, но при больших Ma поток (конвекция) возникает, движимый градиентами поверхностного натяжения. Это называется конвекцией Бенара-Марангони.