Теоремы Клиффорда о круге

Последовательность теорем, относящихся к множествам окружностей, пересекающихся в общей точке

В геометрии теоремы Клиффорда , названные в честь английского геометра Уильяма Кингдона Клиффорда , представляют собой последовательность теорем, касающихся пересечений окружностей .

Заявление

Первая теорема рассматривает любые четыре окружности, проходящие через общую точку M и в остальном находящиеся в общем положении , что означает, что существует шесть дополнительных точек, где пересекаются ровно две окружности, и что никакие три из этих точек пересечения не являются коллинеарными. Каждый набор из трех из этих четырех окружностей имеет среди них три точки пересечения, и (по предположению о неколлинеарности) существует окружность, проходящая через эти три точки пересечения. Вывод состоит в том, что, как и первый набор из четырех окружностей, второй набор из четырех окружностей, определенных таким образом, все проходят через одну точку  P (в общем случае не ту же точку, что и M ).

Вторая теорема рассматривает пять окружностей в общем положении, проходящих через одну точку M. Каждое подмножество из четырех окружностей определяет новую точку P согласно первой теореме. Тогда все эти пять точек лежат на одной окружности  C.

Третья теорема рассматривает шесть окружностей в общем положении, которые проходят через одну точку M. Каждое подмножество из пяти окружностей определяет новую окружность по второй теореме. Тогда эти шесть новых окружностей C все проходят через одну точку.

Последовательность теорем можно продолжать до бесконечности.

Смотрите также

Ссылки

  • WK Clifford (1882). Математические статьи, страницы 51,2 через интернет-архив
  • HSM Coxeter (1965). Введение в геометрию , стр. 262, John Wiley & Sons
  • Уэллс, Д. (1991). Словарь любопытной и интересной геометрии издательства Penguin . Нью-Йорк: Penguin Books. стр. 32, 33. ISBN 0-14-011813-6.

Дальнейшее чтение

  • H. Martini & M. Spirova (2008) «Цепь теорем Клиффорда в строго выпуклых плоскостях Минковского», Publicationes Mathematicae Debrecen 72: 371–83 MR 2406927
Взято с "https://en.wikipedia.org/w/index.php?title=Clifford%27s_circle_theorems&oldid=1033128265"